Смеситель для водяного теплого пола


Термостатический смеситель для водяного теплого пола и ГВС

www.kasskad.ru

Термостатический смеситель для водяного теплого пола и ГВС

Трехходовой термостатический смесительный клапан STOUT с предварительной настройкой для смешивания потоков жидкости в системах отопления теплым полом и в системах горячего водоснабжения. А так же служат для поддержания постоянной температуры смешанной воды для пользования, в том числе и в случае изменения температуры и напора на входе горячей и холодной воды. Максимальная температура 90°С. Перепад давления 2 бара.

Небольшой термостатический смесительный клапан с проходным диаметром присоединения 20 или 25 миллиметров. Латунный корпус покрыт специальным никелевым слоем для приятного визуального вида, резьбовое присоединение разное и зависит от производителя, точнее бывает внутренняя резьба на ¾ и 1» и внутренняя с такими же размерами, некоторые модели имею в комплекте накидные гайки (Американка) с наружной резьбой на ¾. Возможность установки разъемного соединения с обратными клапанами. Наш магазин предлагает хорошего качества продукт от компании STOUT, для тех кто имеет представление о термостатических смесителях, это такие же как WATTS но стоимость не подвержена накрутки за бренд. В конструкции клапана использованы гигиенически безупречные, жаростойкие комплектующие. Металлические детали не входят в соприкосновение одна с другой, что предотвращает образование накипи и обеспечивает длительный срок эксплуатации. Использование термостатических клапанов STOUT обязательное условие для комфортного проживания в доме.

Принцип работы смесителя элементарно прост и не требует особых навыков установки и настройки. Термостатический смесительный клапан это тройник с встроенным вентилем, работающим как в ручном режиме так и от температуры теплоносителя. Почему термостатический - смешивает горячий поток подающей линии с возвратным потоком остывшей жидкости из теплого пола, это нужно для нормальной работы теплого пола, система теплого пола низкотемпературная, если в нее попадает жидкость с большой температурой, нагрев пола будет очень сильный, вы не сможите на него наступить и при долгой эксплуатации при высокой температуре структура пола начнет разрушаться и крошиться.

Модельный ряд термостатической продукции STOUT

  • Термостатический смесительный клапан для систем отопления и ГВС - G 3/4" ВР 35-60°С KV 1,6 м3/ч
  • Термостатический смесительный клапан для систем отопления и ГВС - G 1" НР 20-43°С KV 1,6 м3/ч
  • Термостатический смесительный клапан для систем отопления и ГВС – G 3/4" НР 35-60°С KV 1,6 м3/ч
  • Термостатический смесительный клапан для систем отопления и ГВС - G 1" НР 35-60°С KV 1,6 м3/ч
  • Термостатический смесительный клапан для систем отопления и ГВС - G 1" НР 20-43°С KV 2,5 м3/ч
  • Термостатический смесительный клапан для систем отопления и ГВС - G 1" НР 35-60°С KV 2,5 м3/ч

Рекомендации по использованию и применению клапана STOUT

Согласно директиве VDI 2035 состав теплоносителя не должен вызывать коррозионное разрушение систем отопления, а также исключать возможность образования накипи в системе ГВС. Для промышленных и магистральных энергосистем применяются нормы VdTUV 1466/ AGFW 5/15. Теплоноситель, загрязнённый минеральными маслами или смазками, может оказывать сильное негативное воздействие на уплотнения из EPDM каучука, что, как правило, приводит к нарушению герметизации клапана. При использовании разрешенных, не вызывающих коррозии антифризов (безнитритные растворы на основе этиленгликоля) уделите особое внимание требованиям производителя, указанным в документации, в частности, % концентрации и добавкам ингибиторов.

Компания STOUT имеет в ассортименте термостатические смесительные клапаны для тепловых генераторов на твердом топливе. Такие клапаны позволяют поддерживать высокую температуру рабочей жидкости на входе в котельную. Функция позволяет котельной поднять внутреннюю температуру даже на этапе включения. Таким образом устраняет риск наличия конденсата и понижает образование накипи на теплообменнике. Калибровка по температурному режиму 45-55-60-70°С. Диаметры подсоединения 1″, 1 1/4″.

Термостатические смесители отлично подходят для устройства систем вспомогательного напольного отопления, преимущество смесителей в компактности и небольшой стоимости. Смеситель всегда настраивать нужную температуру для систем теплого пола, вспомогательный теплый пол работает в паре с обычной системой отопления и является функцией комфортного проживания. Смесители предназначен для небольшой площади отопления вспомогательного теплого пола. Не рекомендуем использование смесителя для устройства водяного теплого пола как основное отопление дома.

Принцип и возможность термо смешивания клапана

Схема работы термостатического смесителя STOUT

Смеситель для водяного теплого пола

Лучшие новости сайта

Смеситель для теплого водяного пола важный элемент теплого пола. Смесители служат для того, чтобы обеспечить подогрев пола до необходимой температуры. Как известно, у водяного радиатора теплоноситель может прогреваться до 90 градусов. Разумеется, такой температурный режим недопустим при прогреве пола. Следовательно, нужно корректировать температуру воды. Именно потому на смеситель следует обращать особое внимание, дабы система подогретого пола работала эффективно, обеспечивала именно тот микроклимат, который необходим человеку.

Содержание статьи

  • 1 Виды смесителей
    • 1.1 Вентиль
    • 1.2 Термостатический смеситель
    • 1.3 Узел подмеса
  • 2 Цена смесителей

Виды смесителей

С развитием сантехнического оборудования, появились различные способы совмещать высокотемпературный контур радиаторов и низкотемпературный контур пола. То есть рынок предлагает смеситель, причем далеко не один. По степени сложности и стоимости, их можно распределить в следующем порядке:

  • Установка вентилей на питание теплых полов;
  • Установка ;
  • Установка узла подмеса.

На сегодняшний день каждый из них активно используется в квартирах, домах, общественных заведениях и так далее. У всех имеются свои преимущества, недостатки.

Вентиль

Фотография вентильного смесителя для теплого пола

По сути, это самый простой и доступный в плане финансовых затрат способ снижения температуры в трубках, которые распространяют теплоноситель по полу. Необходимо просто установить на обратку и подачу специальные вентили. Их принцип работы заключается примерно в том же, что и регуляторы радиаторов отопления. То есть вы закручиваете вентиль, в результате которого вода по трубам контура циркулирует медленнее. За счет этого понижается температура.

Увы, у такого решения есть ограничения. Так, применять его можно внутри помещений, площадь которых составляет не более десяти квадратных метров. Плюс ко всему, ручная регулировка не позволяет на данный конкретный момент определить, какой будет температура пола после того, как вы открутите или закрутите на тот или иной уровень вентиль. Установив его в одном положении, температура станет постоянной лишь спустя сутки.

Термостатический смеситель

Фотография термостатического смесителя

Его, кстати, делят на трехходовой и двухходовой. Двухходовые — это модернизированные, доработанные ручные вентили. Температура может поддерживаться в автоматическом режиме. Такой клапан необходимо вмонтировать на место одного из двух вентилей ручного типа.

К плюсам данной системы относят автоматизацию регулировки. При этом есть и недостаток, который заключается в ограничении работы смесителя по площади помещения и длине труб.

Трехходовые модели функционируют иначе. Подается горячий теплоноситель, в который примешивается вода из так называемой обратки. По сути, такие смесители обладают недостатками и преимуществами двухходовых типов. Но, по сравнению с ними, трехходовой может равномернее менять температуру по всему полу внутри помещений.

Узел подмеса

Фото узла смесителей для функционирования теплых полов

Такое устройство состоит из следующих элементов:

  • Термостатический смеситель;
  • Коллектор подачи, обратка с необходимым количеством выходов;
  • .

Основное достоинство данного решения заключается в том, что в состав входит циркуляционный насос. С его помощью вода, то есть теплоноситель, передается на достаточно большое расстояние, быстро, равномерно. Плюс ко всему, к такой системе можно подключать и другие контуры.

Можно смело говорить о том, что за счет узла подмеса, оснащенного насосом, можно к одной системе подключить несколько теплых полов, оборудованных на кухне, гостиной, спальне и так далее. При этом узлы подмеса делят, в зависимости от смесительной группы. Основой подмеса первого типа является клапан с сервоприводом. С его помощью облегчается управлением термостатическими устройствами, подключаются датчики температуры и контроллеры. Такая схема применяется в подавляющем большинстве случаев.

Второй тип состоит из двухходового клапана, и в нем происходит постоянное смешивание холодной и горячей воды. Плюс в том, что перегреть пол такой системой почти невозможно. Однако применять коллекторы данного типа в помещениях, площадь которых превышает двести квадратных метров, специалисты не рекомендуют.

Цена смесителей

Правильная схема установки узла смесителей

На самом деле подобрать необходимый смеситель, предназначенный для теплого водяного пола, можно за разные деньги. Причем стоимость способна отличаться существенно. Так, если самый доступный термостатический смеситель можно найти за 30 долларов, то узел подмеса вполне может встать покупателю в 1000 долларов. Если же брать во внимание средние цены, то тогда ситуация будет выглядеть следующим образом:

  • Около 45 долларов попросят за двухходовой термостатический клапан;
  • Примерно 50 долларов необходимо будет заплатить за трехходовые модели;
  • Узел подмеса для теплого водяного пола обойдется порядка 750 долларов.

Да, полностью сборный узел может влететь в копеечку. При всем при этом, они не очень удобны при установке и последующем техническом обслуживании по причине своей компактности.

При желании, можно собрать систему, которая обойдется раза в полтора дешевле. Для этого узел собирается самостоятельно, соединяется гребенка из полипропилена. Оборудование будет массивнее, на его размещение потребуется больше места. Зато получить доступ к нему намного удобнее. Что уж говорить про итоговую стоимость.

Как ни крути, но устройство всех системы теплого пола следует доверять специалистам. Это очень сложное оборудование, к монтажу которого подходить можно лишь при наличии опыта, квалификации, уверенности в собственных силах. Отыскать мастеров этого дела откровенно не сложно.

Обязательно ознакомьтесь с материалами: Рекомендовать Рейтинг - рейтинг материала: 4,50 из 5Loading...

» »

Источник: http://TaVannaya.ru/santexnika/smesitel/dlya-teplogo-pola.html 

Смеситель для водяного теплого пола фото

beautyline-yar.ru

Смеситель для водяного тёплого пола своими руками



Лучшие новости сайта

Удачной альтернативой радиаторному обогреванию дома является система теплых полов, рассчитанная как на одно помещение (ванную, детскую), так и на все здание. Она, будучи неотъемлемой частью общей системы теплоснабжения, тем не менее, является автономной, так как необходима специальная подготовка теплоносителя перед поступлением в обогревательный контур – комплект труб, вмонтированных в пол. Роль подготовительной станции выполняет тандем — смесительный узел для теплого пола (коллектор) плюс насосная группа. Предлагаем вам разобрать поподробнее, что это такое, как это работает и как правильно подключать коллектор.

Содержание

Назначение смесителя для теплого пола

Визуально смесительный узел выглядит как группа или цепь трубопроводов, собранных в определенном порядке и имеющих единственную цель – соединить два разных потока теплоносителя в один общий.

Можно выделить три типа смешивания:

  • параллельный;
  • последовательный;
  • комбинированный.

Наиболее приемлемым считается последовательное смешивание, преимущественно из-за повышенной производительности: практически весь расход поступает к потребителю.

При последовательном типе смешивания теплоноситель насосом перекачивается от источника тепла к потребителю, при параллельном — линии теплоносителя разделены, из-за чего теряется часть энергии

Иногда используют и параллельный тип. Расход, поступающий к потребителю, непостоянный, зато можно установить двухходовой клапан с возможностью регулировки.

При комбинированном типе есть возможность использовать одновременно последовательное и параллельное смешивание или переключать процесс отдельно на один из них

Схема сборки коллекторной группы может быть различной, рассмотрим один из вариантов:

  • трубопроводы-тройники;
  • клапаны (смесительный, трехходовой, регулирующий) на обеих ветках – подающей и обратной;
  • насос циркулярного типа;
  • оборудование регулировки и автоматизации.

качает воду, пока температура не достигнет заданного значения. Дальше срабатывает автоматика, клапаны закрывают доступ теплоносителя и процесс останавливается. Следует помнить, особенно при самостоятельной установке, что коллектор для водяного теплого пола должен быть оборудован дренажом и системой воздухоотвода.

В сложных обогревательных системах кроме коллекторного оборудования используют смесительный узел, которые соединяет систему теплого пола с радиаторным отоплением

Выбор и подключение коллектора

Модель коллектора полностью зависит от того, где и каким образом расположен . Это в итоге влияет и на его стоимость, а также степень безопасности оборудования. Смесительный узел коллектора – главная и достаточно уязвимая его часть, так как в нем сосредоточен теплоноситель, различный по температуре. В процессе смешивания вода достигает определенной температуры, которая должна сохраняться в заданных параметрах. От выбранных материалов и качества сборки зависит дальнейшая работа системы, поэтому к таким деталям, как смесительный узел, насос или терморегулятор нужно отнестись с особым вниманием.

Коллекторный шкаф — весьма условное обозначение. Он может выглядеть как специальный металлический ящик или просто стенд для удобного монтажа оборудования

На что обращаем внимание при покупке?

На стоимость распределительных коллекторов для теплого пола оказывает влияние материал изготовления: некоторые модели состоят в основном из латуни, другие из нержавеющей стали. Также цена зависит от сложности оборудования — среди различных типов коллекторов есть простейшие, с минимальным набором элементов, а есть полностью укомплектованные дополнительными устройствами защиты (кранами Маевского), сливными кранами, датчиками регулировки и контроля расхода теплоносителя.

Популярностью пользуется оборудование, снабженное узлом терморегуляции, в состав которого входит комплект датчиков температуры и других измерительных приборов. Автоматика регулирует процесс распределения, а в нужный момент включает клапаны спуска воздуха или закрывает поток теплоносителя. Стандартная модель имеет в составе пару термометров, которые дают возможность экономить теплопотери.

Образцом коллектора из нержавеющей стали является изделие «Фонтерра», которое имеет возможность подключения трубопроводов с обеих сторон и установку сервопривода

Оптимальное расположение термометров для учета температуры воды — на обеих трубах, подачи и обратного хода; такое расположение позволяет контролировать нагревание воды до определенного показателя

Если отопительных контуров несколько, то рекомендуют каждый из них оборудовать специальным устройством терморегуляции, состоящим из гребенок (стальных или латунных) и датчиков расхода. В комплект подобного коллектора входит отводчик воздуха, смесительный вентиль, чехол для термометра и непосредственно термоголовка с зондом для погружения в теплоноситель. С помощью вентиля в контур поступает определенное количество горячей воды, а термоголовка контролирует процесс и предотвращает появление неисправностей.

Иногда один распределительный коллекторный узел обслуживает несколько контуров теплого пола. В этом случае длина каждой петли не должна превышать 120 м

Стоимость имеет для некоторых первостепенное значение – выше выделенного бюджета не прыгнуть, тем не менее, не забываем про такие важные нюансы, как площадь помещения и цели его использования. Например, для небольшого помещения (санузла, ванной) подойдет простой коллектор из пластика без сложной системы регулировки температуры. Если все же требуются расходомеры, их можно приобрести дополнительно за небольшую стоимость. В объемном помещении лучше использовать более надежную группу смесителей, имеющую точечную регулировку температуры, за счет которой достигается оптимальная балансировка контура.

Схема расположения двух коллекторов в большом помещении. Конструкция здания такова, что требует монтажа нескольких контуров теплого пола, соответственно, количество распределительных узлов увеличивается

Расположение коллекторного узла

Перед монтажом коллектора теплого пола необходимо установить металлический защитный шкаф — открытый или закрытый. Иногда коллекторный узел оставляют полностью открытым – доступ к нему легче, но страдает защита деталей и соединений. Место для шкафа выбирают, оценив расположение контуров водяного пола. Если веток несколько, то шкаф устанавливают посередине, в одинаковом удалении от рабочих контуров и в непосредственной близости к магистральным трубам. Такое серединное расположение гарантирует максимальную производительность гидравлического процесса.

Место расположения коллекторного узла рассчитывается еще на этапе проектирования. Если создать в стене специальную нишу, оборудование можно разместить в коридоре, на кухне или в любой жилой комнате

Идеальный вариант для размещения оборудования – защищенная с двух сторон стенная ниша, позволяющая аккуратно расположить детали коллектора и подвести трубопровод. Если теплые полы монтируются по всему дому, то для относительно больших помещений требуются отдельные распределительные узлы.

Особенности установки оборудования

В сети интернет можно найти множество инструкций по монтажу и наладке оборудования, вот одна из схем подключения коллектора теплого пола. Она позволяет полноценно собрать систему своими руками, последовательно соединив важнейшие части – трубопровод, распределительный узел и котел.

При установке коллектора следует обратить внимание на такие «мелочи», как место крепления термодатчиков и дополнительный источник электроэнергии для блока питания

Начинать лучше с монтажа термометра и запорных кранов, которые устанавливаются на всех контурных выходах. Как правило, данные детали, регулирующие работу подачи и обратки, входят в комплект коллекторного набора. Пользуясь схемой, можно быстро и грамотно произвести монтаж самого распределительного узла, выполнить подключение труб для подачи и отвода теплоносителя, а также создать возможность отключения по необходимости одного или нескольких обогревательных контуров.

Соединение частей производится при помощи компрессорных фитингов. Для фиксации некоторых соединений используют стандартный комплект из гайки, втулки и кольцевого зажима. Если диаметр деталей не совпадает, применяют переходники.

Примерная схема-инструкция

Элементарный схематический пример – простой коллектор с комплектом запорных вентилей.

Простая схема монтажа коллекторного оборудования хороша для небольших помещений, в которых нагрев воздуха производится непостоянно, например, для ванных комнат

Процесс установки выглядит следующим образом. Первоначально к распределительному узлу подключают две трубы – для подачи и обратки, затем присоединяют элементы обогревательного контура – ветки-теплоносители для теплого пола. Данная система полностью зависит от работы отопительного котла: любое понижение температуры в котле или ограничение подачи теплоносителя сказывается на снижении температуры пола в помещении.

Чтобы простейшая схема стала более функциональной, следует добавить насос циркулярного типа, отводчик воздуха, сливной кран, трехходовой смеситель. Такая подборка позволит контролировать обогревательный процесс в полном объеме.

Источник: http://aqua-rmnt.com/otoplenie/teplyj-pol/smesitelniy-uzel-dlya-teplogo-pola.html 

Похожие новости:

Новости

Топ

  • 

    Читайте также

    Топ новостей

rs35.ru

Смеситель для водяного теплого пола своими руками

Содержание материала

Системой отопления дома, работающей по принципу подогрева поверхности пола, в наше время уже сложно кого-либо удивить. Все больше владельцев загородного жилья, если еще не перешли, то всерьез рассматривают перспективы перехода на эту эффективную и комфортную схему передачи тепла от котельного оборудования в помещения. Одним из вариантов является организация водяных «теплых полов». Несмотря на немалую сложность их монтажа, они весьма популярны из-за экономичности эксплуатации, и пол причине совместимости с уже имеющейся системой водяного отопления, безусловно, после определенных доработок последней.

Смесительный узел для теплого пола своими руками

Вообще, затевать самостоятельное создание водяных «теплых полов», не имея никакого опыта в сантехнических и общестроительных работах – вряд ли стоит. Здесь важен каждый нюанс – от выбора труб и схемы их раскладки, от правильной термоизоляции поверхности пола и заливки стяжки – и до монтажа гидравлической части с последующей точной отладкой системы. Но так уж устроен типичный российский хозяин дома: всё ему хочется попробовать самому. И если «рука набита», то многие стараются провести такие работы самостоятельно. Им в помощь – настоящая публикация, в которой будет рассмотрен один из важнейших узлов такой системы. Итак, для чего нужен, как устроен и можно ли в домашних условиях сделать смесительный узел для теплого пола своими руками.

Какую роль в системе «теплого пола» выполняет смесительный узел?

Традиционная система отопления, подразумевающая установку приборов теплообмена в комнатах (радиаторов или конвекторов), относится к высокотемпературным. Именно под нее рассчитано абсолютное большинство котлов любого типа. Средняя температура в трубах подачи в таких системах поддерживается на уровне около 75 градусов, а нередко бывает даже и выше.

Но подобные температуры – по целому ряду причин абсолютно не допустимы для контуров «теплого пола».

  • Во-первых, это совершенно не комфортно – ходить по слишком горячей, обжигающей ноги поверхности. Для оптимального восприятия обычно достаточно температур в диапазоне 25÷30 градусов.
  • Во-вторых, сильного нагрева «не любит» ни одно напольное покрытие, а некоторые из них просто быстро выходят из строя, теряют свой вид, начинают или вспучиваться, или давать щели и трещины.
  • В третьих, высокие температуры негативно сказываются и на стяжке.
  • В-четвертых, трубы вмурованных контуров также имеют свой температурный предел, а с учетом их жестокой фиксации в слое бетона, невозможности термического расширения, в стенках труб создаются критичные напряжения, приводящие к быстрому выходу из строя.
  • И в-пятых, с учетом площади нагреваемой поверхности, участвующей в теплоотдаче, высокие температуры для создания оптимального микроклимата в помещении – совершенно излишни.

Для радиаторов отопления и для контуров «теплого пола» требуются совершенно разные уровни температур

Как добиться такого «паритета» температур теплоносителя в системе. Существуют, конечно, современные котлы отопления, рассчитанные на работу в том числе и с «тёплыми полами», то есть способные поддерживать температуру в трубе подачи на уровне 35-40 градусов. Но как тогда быть с тем, что в доме предусмотрены и радиаторы, и подогрев пола – организовывать две системы? Совершенно не выгодно, сложно, громоздко, тяжело в управлении. Кроме того, такие котлы пока что еще остаются достаточно дорогим удовольствием.

Разумнее обойтись уже имеющимся оборудованием, просто внеся необходимые изменения в разводку контуров. Оптимальное решение – смешивать горячий теплоноситель с остывшим, уже отдавшим тепло в помещения, чтобы выйти на необходимый уровень температуры.

По большом счету, это ничуть не отличается от того процесса, который мы проделываем ежедневно по многу раз, открывая водопроводный кран, и вращением «барашков» или перемещением рычага добиваемся оптимальной температуры воды для принятия водных процедур, мыться посуды и других надобностей.

Принцип работы смесительного узла во многом повторяет функционирование обычного смесителя на кухне или в ванной.

Понятно, что сам смесительный узел устроен намного сложнее, чем обычный кран. Его конструкция должна обеспечивать устойчивую, сбалансированную циркуляцию теплоносителя в контурах теплого пола, правильный отбор нужного количества жидкости из подающей и обратной трубы, необходимую «закольцованность» потока (когда нет необходимости притока тепла от котла), простой и понятный визуальный контроль за параметрами системы. В идеале – смесительный узел должен сам, без вмешательства человека, реагировать на изменение исходных параметров и вносить необходимые коррективы, чтобы поддерживать стабильный уровень нагрева.

Весь этот комплекс требований, на первый взгляд – кажется очень сложным, трудным для понимания и тем более самостоятельной реализации. Поэтому многие потенциальные владельцы обращают свое внимание на готовые решения – укомплектованные смесительные узлы, реализуемые в магазинах. Внешний вид таких изделий, действительно, внушает уважение своей «навороченностью», однако, и цена довольно часто просто пугает.

На первый взгляд – все очень сложно, да и неимоверно дорого

Но если вникнуть в сам принцип работы смесительного узла, понять где, как и за счет чего происходит процесс смешивания, если ясно представить направление потоков теплоносителя в нем, то картина проясняется. А смеситель для водяного теплого пола своими руками в итоге оказывается, что собрать такой узел, приобретя необходимые детали и используя своё умение в монтаже сантехнических изделий – вполне посильная задача.

Сразу оговоримся – речь в дальнейшем будет идти в основном именно про смесительный узел. Он в дальнейшем подключается к коллектору «теплого пола», про который, безусловно, определенные упоминания просто неизбежны. Но сам коллектор, то есть его устройство, принцип работы, монтаж, балансировка – это тема для отдельной публикации, которая обязательно появится на страницах нашего портала.

Основные схемы смесительных узлов для «теплого пола»

Существует немалое количество схем смесительных узлов для водяных «тёплых полов», различающихся сложностью, компоновкой, насыщенностью приборами контроля и автоматического управления, габаритами и другими признаками. Все их рассматривать – сложно, да и незачем. Обратим внимание на те из них, которые просты и понятны, не требуют сложных элементов, и сборка которых может быть проведена любым человеком, сколь-нибудь разбирающимся в сантехническом монтаже.

На всех представленных ниже схемах слева расположены трубы общего отопительного контура. Красная стрелка показывает вход из магистрали подачи, синяя – выход в трубу «обратки».

С правой стороны – соединения насосно-смесительного узла с «гребёнками», то есть с коллектором тёплого пола, также обозначенные красной и синей стрелками. Следует понимать, что «гребенки» коллектора могут крепиться непосредственно к узлу или быть вынесенными на определенное расстояние и соединены трубной разводкой – все зависит от конкретных условий системы. Нередко обстоятельства складываются так, что смесительный узел располагается в районе котельной, а уже коллектор вынесен в помещение, в то место, от которого удобнее всего осуществить раскладку контуров «теплого пола». Сути работы насосно-смесительного узла это никак не меняет.

Полупрозрачными стрелками красных и синих оттенков показаны направления перемещения потоков теплоносителя.

Схема 1 – с двухходовым термоклапаном и последовательным подсоединением циркуляционного насоса

Одна из самых простых в исполнении схем смесительного узла. Для начала – смотрим на рисунок.

Популярная, несложная в исполнении схема с использованием обычного термоклапана

Разбираемся с комплектующими:

  • Поз. 1 – это запорные шаровые краны. Их задача – только полностью перекрывать в случае необходимости насосно-смесительный узел, например, когда в подогреве пола нет необходимости, или когда требуется проведение определенных ремонтно-профилактических работ.

Шаровые краны применяются только в качестве запорных устройств. Использовать их для регулировок системы – совершенно не допустимо!

Никаких особых требований, кроме высокого качества изделий, к кранам не предъявляется. Они выполняют исключительно роль запорной арматуры, и не принимают никакого участия в регулировке работы системы отопления. На них в принципе должно использоваться только два положения – полностью открыт или полностью закрыт.

Краны поз. 1.1 и 1.4, отсекающие всю систему теплого пола от общего контура отопления – обязательны. Краны поз. 1.2 и 1.3 – могут ставиться между смесительным узлом и коллектором по усмотрению мастера, но они никогда не помешают. Появляется возможность отсекать коллекторный узел для проведения каких-либо работ, не прикрывая собственно контуров теплого пола, то есть – не сбивая выверенных настроек каждого из них.

  • Поз. 2 – фильтр грубой очистки (так называемый «косой» фильтр). Его, наверное, нельзя назвать совершенно обязательным элементом смесительного узла, но стоит он руками недорого, а на долговечность системы повлиять способен.

«Косой» фильтр-грязевик – необязательный, но всегда рекомендуемый мастерами элемент узла

Понятно, что подобные фильтрующие устройства ставятся в обязательном порядке в общей котельной. Однако, при циркуляции теплоносителя в разветвленной системе нельзя исключить попадания в него и переноса твёрдых включений, например, от радиаторов отопления. А насосно-смесительный и следующий за ним коллекторный узлы — насыщены регулировочными элементами, для которых твёрдые примеси крайне нежелательны, так как могут дестабилизировать работу клапанных устройств. Значит, разумнее будет дополнить свою смесительную схему еще и индивидуальным фильтром.

  • Поз. 3 – термометры. Эти приборы помогают осуществлять визуальный контроль за работой смесительного узла, что особо важно при отладке и балансировке системы «теплого пола». На всех последующих схемах будет показано по три термометра – на трубе подачи из общего контура (поз. 3.1), на входе в коллектор, то есть показывающий температуру потока после смешения (поз. 3.2), и на «обратке» после коллектора, до ответвления от нее на смесительный узел (поз. 3.3). Это, наверное, оптимальное расположение, наглядно показывающее и качество смешивания, и степень теплоотдачи «теплого пола». В идеале разница показаний на подающей и обратной гребенке коллектора не должна быть выше 5÷10 градусов. Впрочем, некоторые мастера обходятся и меньшим количеством термометров.

Термометры необходимы для точной отладки системы и для контроля за ее работой в ходе повседневной эксплуатации

Исполнение термометров может быть разным. Кому-то больше по душе накладные модели, не требующие врезки в систему (на иллюстрации – слева). Но большей точностью показаний, да и просто своей надежностью, все же обладают приборы с датчиком-зондом, который вкручивается в соответствующее гнездо тройника.

  • Поз. 4 – двухходовый термоклапан. Это точно такой же элемент, как устанавливается на радиаторах отопления. Именно он и будет в данной схеме количественно регулировать поток поступающего в систему «теплого пола» горячего теплоносителя.

Двухходовый термоклапан – из числа тех, что предназначены для радиаторов отопления в однотрубной системе

Здесь есть один нюанс – подобные термоклапаны различаются предназначением — для однотрубных или двухтрубных систем отопления. Но это различие важно при установке их именно на отдельный радиатор. А вот для смесительного узла, который обслуживает несколько контуров «теплого пола», важна повышенная производительность. Это значит, что выбирать следует клапан для однотрубных систем, даже если вся система организована по двухтрубному принципу. Эти клапаны даже визуально — более объёмные по своим габаритам, они обычно маркируются литером «G» и выделяются серым защитным колпачком.

  • Поз. 5 – термоголовка с выносным накладным датчиком (поз. 6). Этот прибор надевается (накручивается или закрепляется с помощью специального адаптера) на термоклапан и непосредственно управляет его работой. В зависимости от показаний температуры на выносном датчике, который связан с головкой капиллярной трубкой, клапан будет менять положение, приоткрывая или полностью закупоривая проход для горячего теплоносителя.

Работой двухходового термоклапана управляет специальная термоголовка с выносным температурным датчиком

Сразу вопрос – а где установить термодатчик? Есть два варианта – он может быть наложен на трубу подачи в коллектор, после смесительного узла, за насосом,  либо – на трубу обратки коллектора, до ее разветвления на смешение. Существуют приверженцы и того, и другого метода.

— В первом случае – обеспечивается постоянная температура подачи теплоносителя в контуры теплого пола. Обеспечивается стабильность работы, сводится практически к нулю вероятность перегрева пола. Но, вместе с тем, система, если она дополнительно не оснащена термостатическими элементами непосредственно на контурах, перестает реагировать на изменение внешних условий. То есть изменение температуры в помещении никак не отразится на уровне нагрева подаваемого в «теплый пол» теплоносителя.

— Во втором случае, при термодатчике на обратке, обеспечивается стабильность температуры именно на этом участке. То есть уровень нагрева теплоносителя, уходящего в коллектор после смесительного узла, может колебаться. Хороша подобная схема тем, что система откликается, например, на похолодание, автоматически поднимая температуру в подаче, и снижая ее при потеплении. Удобно, но есть определенные риски. Так, при первоначальном прогреве стяжки пола в контуры изначально может пойти слишком горячий теплоноситель. Аналогичная ситуация вполне вероятна и при резком притоке холода, например, при настежь открытых окнах в случае экстренного проветривании помещения.

Сменить положение накладного термодатчика – не столь сложно, если заранее предусмотреть места для его установки. Так что можно опробовать оба варианта, выбрав затем оптимальный.

Про устройство термоклапана и термостатической головки рассказываться не будет – на эту тему есть отдельная публикация.

Как устроена система термостатической регуляции радиаторов отопления?

Установка дополнительных приборов позволяет обеспечить постоянные комфортные условия в помещении, независимо от изменения внешних условий. Назначение, устройство, установка и работа терморегуляторов для радиаторов отопления – в специальной статье нашего портала.

  • Поз. 7 – обычные сантехнические тройники, между которыми прокладывается своеобразный байпас – перемычка, по которой и будет отбираться теплоноситель из «обратки» для смешивания с горячим потоком. По сути, тройник 7.1 и становится зоной основного смешения.
  • Поз. 8 – балансировочный клапан. Он используется при точной настройке системы, с тем, чтобы добиться оптимальных показаний работы циркуляционного насоса по напору и производительности. Бывает необходимо снизить (или, как часто говорят сантехники, «придушить») поток через перемычку из обратки, чтобы в различных зонах смесительного узла и коллектора не создавалось ненужных областей излишнего разрежения или повышенного давления, а сам насос – работал бы в оптимальном режиме.

В качестве балансировочного клапана рекомендуется смонтировать подобный блок-кран, который часто ставится на «обратку» радиатора

Никаких хитростей в этом устройстве нет – по сути, это обычный вентиль ограничивавший поток. Здесь можно поставить и обыкновенный сантехнический вентиль. Показанный на иллюстрации блок-кран выгодней с тех позиций, что он компактен, а также оттого, что выполненные ключом-шестигранником настройки никто не сможет случайно сбить, например, дети, желающие просто из любопытства покрутить маховик. Так что лучше, настроив систему, закрыть регулировочный узел крышкой – и быть относительно спокойным.

  • Поз. 9 – циркуляционный насос. Тот насос, который обслуживаешь всю систему отопления в целом, никак не сможет обеспечить циркуляцию по длинным контурам «теплого пола», особенно, если их к коллектору подсоединено несколько штук. Так что каждый смесительный узел оснащают собственным прибором.

Желательно, чтобы насос имел возможность переключения на несколько режимов работы по производительности и создаваемому напору

Настройка системы теплых полов будет проще, если циркуляционный насос будет иметь несколько переключаемых режимов работы.

Как правильно выбрать циркуляционный насос?

Разнообразие моделей в настоящее время – чрезвычайно велико, что может даже поставить в тупик неопытного потребителя. Подробнее об устройстве и технических характеристиках циркуляционных насосов, о правилах их выбора и установки – в специальной публикации нашего портала.

  • Поз. 10 – обратный клапан. Очень нехитрое и недорогое сантехническое приспособление, предотвращающее несанкционированное протекание теплоносителя в обратном направлении

Обычный обратный клапан бывает нелишним и в смесительном узле

Может показаться. Что особой необходимости в его установке и нет. Тем не менее, такая страховка может оказаться нелишней. Например, ситуация, когда термоклапан, из-за достаточной температуры на коллекторе, полностью закрыт. Циркуляционный насос работает, и в принципе способен подсасывать теплоноситель из общей трубы «обратки» системы. А там температуры – совсем иные, намного выше, чем даже на подаче «теплого пола». То есть такой обратный ток может здорово дезориентировать работу смесительного узла.

С элементами и из взаимным расположением – всё. Посмотрим, как работает такой узел.

Поток теплоносителя из общей трубы подачи минует «косой» фильтр и термометр, доходит до термостатического клапана. Здесь он снижается, за счет уменьшения просвета канала свободного прохода жидкости. Термоголовка чутко следит за динамикой изменения температуры, приоткрывая или закрывая клапанное устройство.

Циркуляционный насос, работящий в контуре «теплого пола» оставляет за собой зону разрежения, которая «затягивает» регулируемый поток горячего теплоносителя. Но так как при этом производительность насоса не изменяется, то «недостача» компенсируется поступлением охлаждённого теплоносителя из линии обратки, идущей от коллектора, через байпас-перемычку.

В точке соединения потоков (в верхнем тройнике) начинается их смешение, и насос перекачивает уже доведенный до нужной температуры теплоноситель. Если температура на датчике термоголовки достаточна или избыточна, то термоклапан вообще будет перекрыт, и насос начнет гонять воду только по контурам «теплого пола», без подпитки извне, до ее остывания. Как только температура опустится ниже установленного значения, термоклапан приоткроет проход горячему теплоносителю, для достижения после точки смешения необходимого значения.

При стабильной работе системы, выведенной на расчетную мощность, поступление горячего теплоносителя из общей подачи обычно не столь велико. Клапан по большей части находится в приоткрытом состоянии, но очень чутко при этом реагируя на изменение внешних условий, обеспечивая стабильность температуры в контурах «теплого пола».

Примерно так может выглядеть готовая сборка смесительного узла, рассмотренная в этом подразделе (правда, нет отсекающих кранов по входам)

Подобный принцип, при котором весь перекачанный циркуляционным насосом объем теплоносителя направляется в коллектор «теплого пола», называется смесительным узлом с последовательным подключением насоса.

Схема 2 – с трехходовым термоклапаном и последовательным подсоединением циркуляционного насоса

Эта схема очень похожа на предыдущую, тем не менее, есть у нее и свои отличия.

Похожая схема, но использован уже трехходовой термоклапан

Главное отличие – использование не двухходового, а трехходового термоклапана (поз. 11) с той же термостатической головкой. Он занял место тройника в точке пересечения линии подачи и трубы байпаса-перемычки.

Необходимый комплект: трехходовой смесительный термоклапан + термоголовка с выносным накладным датчиком

Смешение в данном случае проходит непосредственно в корпусе термоклапана. Он устроен таким обозом, что при прикрытии одного канала поступления теплоносителя одновременно приоткрывается второй, что обеспечивает большую стабильность работы узла смешения – суммарный расход всегда выдерживается на одно уровне. Это дает возможность обойтись и без балансировочного клапана на байпасе.

Важно – трехходовые термоклапаны бывают смесительного и разделительного принципа действия. В данном случае необходим именно смесильного, с перпендикулярными направлениями подачи потоков. Обычно соответствующие стрелки вынесены на корпус прибора, и ошибиться с этим трудно.

Стрелками наглядно показано правильное направление смешиваемых потоков

Трёхходовой клапан может быть и без термоголовки – с собственным встроенным температурным датчиком и шкалой выставления необходимой температуры на выходе. Некоторые мастера предпочитают именно такую, термостатическую разновидность, как более простую в установке. Правда, устройство с выносным датчиком работает все же точнее. Кроме того, при эксплуатации системы с термостатическим трехходовым клапаном выше вероятность несанкционированного прохождения теплоносителя высокой температуры на коллектор.

Такому трехходовому клапану термостатическая головка не нужна – у него собственный встроенный термодатчик, управляющий его работой

Разделительные трехходовые клапаны, кстати, тоже могут использоваться в подобной схеме. Только место их установки – на противоположной стороне байпаса, и они уже регулируют разделение и перенаправление потока охлажденного теплоносителя к точке смешения, в сторону насоса.

Комплект для размещения в нижней точке байпаса – трехходовой термоклапан разделительного действия (смотри на стрелки)

Узел смешения с трехходовым клапаном, в связи с большой стабильной производительностью, больше подходит для крупных коллекторных развязок с несколькими контурами различной протяжённости. Применяют их и в случае использования погодозависимой автоматики, которая нередко предполагает еще и автоматизированное управление работой циркуляционного насоса. Для небольших систем она себя не оправдывает, как более сложная в регулировке.

На схеме под знаком вопроса показан обратный клапан (поз. 10.1). В принципе, он оправдан в том случае, если по тем или иным причинам не работает циркуляционный насос узла, например, автоматика дала команду на прекращение циркуляции. В таких ситуациях перемычка от обратки к трехходовому клапану может превратиться в совершенно неуправляемый байпас, который нарушит балансировку системы и скажется на работе других отопительных приборов в доме. Обратный клапан способен предотвратить это явление. Впрочем, многие опытные мастера ставят под сомнение вероятность возникновения подобных ситуаций, и считают клапан на этом участке – совершенно излишним и даже вредным, как оказывающим ненужное гидравлическое сопротивление.

Схема 3 – с трехходовым термостатическим клапаном, работающим со сходящимися потоками, и последовательным подсоединением циркуляционного насоса

В продаже можно отыскать термостатические клапаны, которые организованы по принципу смешения двух сходящихся по одной оси потоков. С ними схема сборки насосно-смесительного узла может принять такой вид:

Достаточно компактная схема с трехходовым термостатическим клапаном, смешивающим встречные потоки теплоносителя.

Отличить подобные термостатические краны – несложно, по их характерной форме и нанесенным схемам (пиктограммам) направления потоков.

Смесительный термостатический клапан, работающий со встречными потоками. Ошибиться в установке – сложно…

Показанная выше схема хороша уже своей компактностью. Байпас, как таковой, вообще отсутствует, так как его роль полностью выполняем сам смесительный клапан. В остальном – это все та же схема с принципом последовательного подключения циркуляционного насоса.

Схема 4 – с двухходовым термоклапаном и параллельным подсоединением циркуляционного насоса

А вот такая схема уже значительно отличается ото всех, показанных выше:

Коренное отличие – циркуляционный насос разместился на байпасе, а «обратка» и подача коллектора поменялись местами

Подобный принцип строения узла предполагает так называемое параллельное подключение насоса, буквально на байпасе. Но к верхней точке этого байпаса подходят два встречающихся потока – от подачи общей системы и от обратки коллектора. На подаче установлен двухходовой термоклапан с термоголовкой и выносным датчиком – все так же, как и в первой схеме. Обеспечивающий циркуляцию через перемычку насос забирает оба сходящихся потока, и их смешивание происходит в тройнике сверху (выделено овалом и стрелкой) и в самом насосе. А вот дальше, в нижней точке перемычки на тройнике происходит разделение потока. Часть теплоносителя с уже выровненной до необходимого уровня температурой отправляется на подающий коллектор «теплого пола», а избыточное количество – сбрасывается в общую «обратку» системы отопления.

Подобная схема привлекает, прежде всего, своей компактностью. В условиях ограниченности места под установку смесительного узла – это одно из приемлемых решений. Однако, недостатков у нее немало. Прежде всего, очевидно, что производительностью она явно уступает узлам с последовательным подключением насоса. Получается, что определенный объем теплоносителя после смешения и доведения до требуемой температуры, перекачивается насосом впустую – он не участвует в работе контуров теплого пола и просто уходит в «обратку».

Кроме того, подобная система отличается немалой сложностью в проведении балансировки, и часто требует установки дополнительных балансировочных и (или) перепускных клапанов.

Интересно, что многие готовые смесительные узлы заводской сборки организованы именно по параллельной схеме – скорее всего, из соображений максимальной компактности. И народные умельцы придумывают способы их переделки под более «послушную» схему — с последовательным насосом.

Схема 5 – с трехходовым термоклапаном и параллельным подсоединением циркуляционного насоса

Наконец, еще одна схема:

Изменения незначительны — просто двухходовой клапан и тройник  замены на трехходовой термостатический смеситель

В дополнительных комментариях она, наверное, не нуждается, так как практически повторяет предыдущую. Отличие – это применение трёхходового термоклапана или термостатического смесителя (поз. 12) в верхней точке над насосом. Направление сходящихся потоков до смешения и разделение их на ройнике после насоса – наглядно продемонстрировано стрелками.

Безусловно, существуют и куда более сложные схемы, которые практикуют производители готовых насосно-смесительных узлов. Но для самостоятельного изготовления лучше остановиться на чем-либо простом в сборке и надежном в эксплуатации, выбрав одну из предложенных схем и реализовав ее удобным для себя и для конкретных условий установки способом.

Производительность смесительного узла и необходимый напор циркуляционного насоса

При подборе комплектующих для самостоятельной сборки насосно-смесительного узла необходимо, помимо соединительных диаметров труб и требуемых элементов, знать еще и некоторые эксплуатационные параметры. В частности, сам насос и любой термоклапан или смесительный вентиль должны отвечать требованиям по производительности. Говоря проще – это способность пропустить через себя требуемое количество теплоносителя в единицу времени. А для насоса важен еще и создаваемый напор, так как он должен обеспечить стабильную циркуляцию теплоносителя во всех подключенных к смесительному узлу контурах «теплого пола».

Обычно для сложных по структуре систем подобные расчеты проводят специалисты в области гидравлики и теплотехники. Однако, простые вычисления для собственноручно создаваемой системы «теплого пола», со вполне допустимым уровнем точности, можно провести и самостоятельно.

Производительность смесительного узла.

В вопросах производительности циркуляционный насос является «активным звеном». То есть именно он и должен обеспечить прокачку необходимого объема теплоносителя через контуры, который отдаст часть накопленной энергии на обогрев помещения. Термостатический же элемент смесительного узла долже быть в  состоянии пропустить такой объем через себя. Клапаны могут выпускаться с различной пропускной способностью, а некоторые из них, кроме того, имеют возможность предустановки на определенную производительность в единицу времени.

Понятно, что чем больше площадь отапливаемых помещений, и чем выше требования с системе «теплого пола» (будет ли она основным источником тепла или планируется только повышение общей комфортности в помещениях), тем больше тепловой энергии необходимо доставить для теплообмена. А так как разница температур на подающем и обратном коллекторе обычно выдерживается постоянная, то несложно вычислить и объем воды, необходимый для переноса требуемого количества тепла.

Не станем утомлять читателя сложными формулами, а лучше предложим воспользоваться встроенным калькуляторов, который сделает расчёт максимально простым занятием.

В качестве исходных данных будет выступать площадь помещений, в которых создается система «теплый пол». Причем, есть определенное дифференцирование, в зависимости от того, будет ли такой подогрев основным, либо же будет рассматриваться только как средство повышения комфорта в жилых помещениях. Для ванной, туалета, прихожей или кухни мощность пола лучше рассматривать с точки зрения основного отопления.

Далее, будет предложено вести планируемые температуры на подающем и обратном коллекторах. В правильно смонтированной и отрегулированной системе разница обычно около 5, максимум – 8÷10 градусов.

Калькулятор расчета производительности смесительного узла «теплого пола»

 

Введите запрашиваемые значения и нажмите кнопку "Рассчитать требуемую минимальную производительность "

.ПЛОЩАДЬ ПОМЕЩЕНИЙ, КОТОРЫЕ ПОДКЛЮЧЕНЫ К СМЕСИТЕЛЬНОМУ УЗЛУ ТЕПЛОГО ПОЛА

Площадь помещений, в которых теплый пол - основной источник обогрева, м²

Площадь помещений, где теплый пол играет вспомогательную роль, м²

.ТЕМПЕРАТУРА В ПОДАЮЩЕМ И ОБРАТНОМ КОЛЛЕКТОРЕ ТЕПЛОГО ПОЛА

Температура в подающем коллекторе, ºС

Температура в обратном коллекторе, ºС

В качестве теплоносителя используется:

- вода - незамерзающая жидкость (специальный антифриз)

Теплоемкость антифриза, Вт×ч/(кг×°С)

Плотность антифриза, г/см³

Создаваемый насосом смесительного узла напор

Циркуляционному насосу смесительного узла «надеяться не на кого» – он должен обеспечить работу всех контуров отопления, без вероятности их запирания из-за недостаточности давления в системе. Это особо актуально в тех случаях, когда термостатический элемент полностью перекрывает подачу горячего теплоносителя, и приток извне приостанавливается – циркуляция при этом страдать не должна.

Здесь уже на первый план выйдут показатели гидравлического сопротивления труб, на которые накладываются еще и немалые потери напора на запорно-регулирующей арматуре узла, которой он обычно весьма насыщен.

А сколько и каких труб понадобится?

В настоящей публикации этот вопрос рассматриваться не будет. Провести расчет необходимого количества труб поможет калькулятор, размещённый в статье нашего портала, посвященной монтажным схемам контуров теплого пола.

Понятно, что насос будет создавать на подающем коллекторе равное значение давления для всех контуров. Этот параметр в ходе регулировки системы будет настраиваться для каждого контура отдельно с помощью специальных балансировочных устройств. Значит, расчет необходимо провести для наиболее протяженного контура, в котором показатели гидравлического сопротивления будут максимальными.

Ниже расположен калькулятор, который позволит быстро определиться с минимально необходимым значением напора. В программу расчета уже внесены нужные поправки на гидравлические потери напора в запорно-смесительных элементах узла.

Калькулятор расчета минимально необходимого напора циркуляционного насоса для смесительного узла

Значения, полученные от обоих калькуляторов, станут ориентиром для приобретения циркуляционного насоса с оптимальными параметрами. Как правило, производители такого оборудования сопровождают свои изделия паспортом, в котором приводится  диаграмма оптимальных соотношений производительности и создаваемого напора в разных режимах работы прибора.

Для примера – диаграмма напорно-производительной характеристики циркуляционного насоса «Grundfos UPS 25-40 A 180» в трех режимах его работы. Жирными линиями выделены оптимальные соотношения

Самостоятельная сборка насосно-смесительного узла для «теплого пола»

Готовых «рецептов» по монтажу смесительного узла нет. Каждый из мастеров подходит к такому вопросу субъективно, с учётом многих критериев. В первую очередь, безусловно, многое зависит от умения хозяина. Кто-то считает себя «асом» в вопросах сборки резьбовых сантехнических узлов (а без резьбовых сопряжений не обойдётся в любом случае). Другому больше по душе работа с полипропиленовыми трубами, и у него есть соответствующее оборудование для их пайки. На выбор конкретной схемы монтажа способна повлиять и финансовая составляющая – если есть необходимость строго уложиться в определенный бюджет.

Одним словом — важно знать схему и примерныую последовательность сборки. А уж настоязий хозяин всегда найдет оптимальные пути ее реализации.

Иллюстрированный пример сборки смесительного узла на резьбовых соединениях

Для примера ниже в иллюстрированной пошаговой инструкции будет показан монтаж смесительного узла, полностью собранный из металлических комплектующих. Схема – аналогична рассмотренному выше варианту №2, то есть с термостатическим трехходовым клапаном-смесителем и с последовательным подключением циркуляционного насоса.

В данном случае не ставится цель научить начинающего мастера правилам запаковки резьбовых соединений – для наработки соответствующего опыта обычно используют более простые и менее ответственные сборки. Поэтому монтаж будет показан «условно», без окончательной затяжки. Можно лишь заметить, что для запаковки лучше всего применять льняную паклю в сочетании с герметизирующей пастой типа «Unipak» – надёжность будет обеспечена. Обратите, кроме того, внимание, что мастер в показанном примере очень широко использует соединения с помощью накидных гаек-«американок» с кольцевыми уплотнениями. Это, конечно, приводит к удорожанию общей сметы, но зато всегда есть возможность без особого труда провести демонтаж любого элемента смесительного узла для его профилактики ремонта или замены.

Иллюстрация Краткое описание выполняемой операции Готовятся к работе основные комплектующие смесительного узла. Основная роль в данном случае отводится трехходовому смесительному термостатическому клапану «ESBE VTA572». Обратите внимание – стрелками на упаковке показано направление смешивания потоков. Допустимый диапазон поддержания стабильной температуры на выходе —  от 20 до 43 ºС. Как раз то что надо для «теплого пола». Об этом, кстати, красноречиво говорит и пиктограмма на упаковке – этот тип смесителя рассчитан именно для такого использования. А вот он и сам. Такому клапану не требуется термостатической головки – он включает в своей конструкции и встроенный термодатчик, и регулятор, позволяющий выставить температуру на выходе с точностью до градуса. На корпусе также цветными стрелками указано направление горячего и холодного потоков теплоносителя. Следующий важнейший элемент – циркуляционный насос. Применяется модель одного из лучших брендов – WILO. Необходимо сразу оценить компоновку будущего смесительного узла, направление работы насоса и положение его коммутационной коробки с переключателем режимов. Смысл в том, что насос должен не только быть расположенным в соответствии с направлением потока. Обязательное условие – ось его привода должна принять горизонтальное положение (это особенности конструкции насосов с «мокрым ротором»). Кроме того, коммутационная коробка не должна располагаться под насосом. Если такое положение никак не складывается в конкретных обстоятельствах, можно перевернуть верхнюю часть корпуса, к которой закреплена коробка, вокруг оси на 180º. Делается это очень просто. Ключом-шестигранником выкручиваются винты, соединяющие две половины насоса. Кода насос новый, они должны податься без особого сопротивления. Чаще всего таких винтов – четыре штуки. После того как винты выкручены, необходимо просто аккуратно повернуть верхнюю силовую половину относительно нижней, помповой. Совмещаются крепёжные отверстия, винты вкручиваются и обжимаются для надёжной герметизации. Насос пока можно отложить в сторону. В данном примере, так же, как было ранее показано на схеме, мастер будет устанавливать три термометра – на трубе подачи до смешения, после насоса и на выходе с обратного коллектора. Выбраны термометры с зондами, вкручивающиеся в центральные гнезда соответствующих тройников. Есть смысл сразу сверить показания всех трех приборов. Раз они находятся в одинаковых условиях, то, надо полагать, и показания должны давать идентичные. А еще лучше – сверить эти показания еще и с эталонным термометром любого типа, если он есть в хозяйстве, то есть с прибором, точность которого у вас не вызывает сомнений. Если замечены какие-либо отклонения в показаниях – можно провести самостоятельную калибровку. На тыльной торцевой стороне зонда (при снятом колпаке) имеется регулировочный винт под тонкую отвертку. Начинается монтаж. Первым собирается участок от общей подачи до клапана смесителя. Скручиваются между собой запорный шаровой кран с тройником под термометр. Обратите внимание – все четыре кранах будут оснащены накидными гайками. Любой из кранов или любой их участков смесительного узла можно будет демонтировать в случае необходимости, не проводя полной разборки. Второй конец тройника соединяется с входным патрубком смесительного трехходового клапана. Вот этот узел в сборе… …а это он же, но с уже установленным в центральное гнездо тройника термометром. Монтируется байпас-перемычка для подвода охлаждённого потока к смесительному клапану. Снизу на второй вход клапана накручивается муфта, также снабженная накидной гайкой- «американкой». Это позволит при необходимости легко снять сам смесительный клапан. Снизу на перемычку накручивается тройник: один его выход обращен в сторону общей «обратки» системы, второй – к «обратке» коллектора. Участок в сторону общей "обратки" состоит только из запорного шарового крана. Термометр здесь совершенно не нужен. Кроме того, мастер обошелся и без обратного клапана, вероятность включения в работу которого – все же очень невысока. Собирается противоположная «ветка». Вот здесь термометр – очень важен, поэтому вкручивается тройник под него. Термометр поставлен на штатное место. Собирается участок, идущий от насоса к подающему коллектору. Он состоит из муфты с «американкой», входящей в комплект насоса, тройника под термометр, удлинителя (прямого участка для окончательного качественного смешивания потоков) и запорного крана. Участок собран. Да, чуть не упустили момент – на нижней «ветке» со стороны коллектора тоже устанавливается шаровой кран. На оставшийся последним свободный патрубок смесительного клапана, на выходе из него, накручивается муфта с накидной гайкой из числа входящих в комплект насоса. По сути, все уже готово для того, чтобы завершить монтаж смесительного узла установкой циркуляционного насоса. В «американку» вставляется кольцевая резиновая прокладка, а затем гайка со стороны смесительного клапана закручивается на входном патрубке насоса. На всякий случай – еще раз проверяется правильность положения насоса – стрелка на корпусе должна соответствовать требуемому направлению потока теплоносителя в смесительном узле. С одной стороны насоса – закончено. Аналогичным образом накручивается и обжимается накидная гайка и с противоположной стороны насоса. Эта операция, в принципе, и завершает общий монтаж насосно-смесительного узла подобной конструкции. Насосный узел – в сборе. После обтяжки всех соединений можно заниматься вопросами его размещения на стене котельной или в коллекторном шкафу помещения, как планировалось заранее. На последней иллюстрации, в качестве примера, показан этот же смесительный узел, но в котором с целью удешевления и достижения максимальной компактности просто исключены тройники с термометрами. Да, габариты стали меньше, и по стоимости будет дешевле. Однако без визуального контроля за параметрами системы – все же очень сложно, особенно на стадии отладки и балансировки. Так что есть над чем подумать. Как вариант – установка более дешевых и занимающих меньше места накладных термометров.

И в завершение публикации – еще один смесительный узел, примерно такой же схемы, но несколько иной компоновки. В его монтаже был использован комплексный подход – сочетание резьбовых и паяных полипропиленовых соединений.

Видео: еще один пример самостоятельного изготовления насосно-смесительного узла

Источник: http://otoplenie-expert.com/vodyanye-teplye-poly/smesitelnyj-uzel-dlya-teplogo-pola-svoimi-rukami.html Смесительный узел для теплого пола своими руками - схемы и нюансы монтажа Павлов пластика носа

alcogolizma-lechenie.ru


Смотрите также