Содержание
Главная » Теплый пол » Теплый пол без насоса
Теплый пол без насоса
Варианты обустройства теплого пола без насоса и смесительного узла: нюансы обустройства, установка клапана
Смесительный узел в водяной системе обогреваемого пола нужен для корректирования температуры теплоносителя. Установленный котел нагревает теплоноситель до требуемой температуры – 55 градусов. Этого хватает для прогрева пола до 30 градусов. Данный показатель комфортен для холодного периода года. В коллекторе смеситель самостоятельно смешивает горячую и холодную воду до нужной температуры. Если планируется теплый пол без насоса, то теплоноситель подается в систему с заданной температурой, но для этого требуется отдельный котел или наличие централизованной отопительной системы.
Иногда монтаж коллектора неоправдан
Нюансы обустройства водяного подогрева пола без применения смесительного узла
Главный минус укладки системы водяного отопления без узлов смесителя и коллектора состоит в том, что требуется минимизировать потери температуры воды на пути следования «нагреватель – контур», ведь температуру на покрытии пола нужно держать постоянной. Поэтому рекомендуется учитывать такие требования:
- утеплить стены здания;
- уложить теплоизоляционный материал в пирог напольного покрытия;
- установить качественные конструкции оконных рам;
- смонтировать напольное покрытие в максимальной близости с нагревателем;
- площадь комнаты не должна быть больше 20 кв. м.
Внимание! Главная ошибка в установке водяной бесколлекторной системы пола – попытка ее применения на больших площадях. Поэтому надо подсчитать продолжительность труб и схему укладки так, чтобы температура в обратной трубе не оказалась слишком низкой. Иначе в котле образуется много конденсата, а это приведет к его поломке.
Отдельные экспеты говорят, что при холодной «обратке» спасает подсоединение конденсатного котла с высоким коэффициентом полезного действия – ему не страшны низкие температуры теплоносителя.
Варианты установки системы обогреваемого пола без использования узла и коллектора
Для устройства системы водяного отопления подогреваемых полов без использования коллектора требуются следующие материалы и устройства:
- трубы для контура;
- котел;
- комплектующие к трубопроводу;
- трехходовой термостатический клапан.
Схема укладки теплого пола от централизованной системы отопления
Некоторые мастера стараются применить наиболее легкий метод монтажа – обустроить систему подогрева, присоединив ее к центральному отоплению. Это решение грозит впоследствии неисправностями трубопровода, так как температура теплоносителя батарей существенно выше, чем требуется для пола. А если надзорные организации обнаружат присутствие этого «самодельного устройства» без разрешения соответствующих органов, собственнику собственнику выпишут немалый штраф и потребуют демонтировать систему водяного теплого пола.
Укладка контура труб
Для укладки контура трубопровода используется несколько способов, самые приемлемые – улитка и змейка. Эти схемы состоят из двух параллельных петель водяного пола (подающая и обратка). Преимущество «змейки» заключается в распределении зон нагрева, к примеру, можно обойти сантехнику. Преимущество «улитки» – равномерный прогрев площади. После монтажа трубы по схеме подключения присоединяют к котлу.
Для ускорения движения воды по трубам под котлом монтируют на подачу насос, который управляется автоматически или вручную. В системе, где нет смесительного узла, схему между трубопроводом и котлом замыкает трехходовой термостатический клапан.
Внимание! Чтобы теплый пол функционировал без насоса, рекомендуется выбрать мощный котел, неважно, газовый или электрический. Главное, чтобы его мощности хватало на теплое напольное покрытие. Стоит выбрать котел с встроенным насосом.
Установка клапана термостатического для теплого напольного покрытия
трехходовой термостатический клапан
Монтируют клапан на подачу теплоносителя, а к обратной трубе устанавливается перемычка. Клапан предназначен для регулировки температуры теплоносителя, он представляет собой смеситель, внутри которого установлен термочувствительный элемент. Клапан защищает систему – он автоматически прекращает поток на трубе подачи в нужный момент.
Установка обогреваемого пола без использования смесительного узла
Потребность в монтаже насоса полностью отпадает, если приобрести и установить котел с встроенным насосом. Главное преимущество такого котла – хорошо подобранная комплектация. Это значит, что не следует выбирать котел по каким-то характеристикам, достаточно определить нужную мощность.
Описанные способы установки имеют место, но лучше один раз приобрести все элементы, подключить правильно систему теплого водяного пола и не переживать, что потраченные средства на обустройство такого пола будут потрачены зря.
Вконтакте
Google+
Средняя оценка оценок более 0 Поделиться ссылкой
Нужные товары
Всего более 200 товаров в каталоге
laminatepol.ru
Насос для теплого пола: описание и особенности подключения
Водяные теплые полы популярны за счет низкой стоимость в момент эксплуатации. Особенно важно это для больших площадей. Сам процесс монтажа стоит недешево. При этом важно соблюдать некоторые технические особенности. В том числе должен быть предусмотрен насос для теплого пола. Какие виды их существуют, а также особенности подключения рассмотрим подробнее.
Конструкция устройства
Любой насос для теплого пола продается со следующим набором частей:
- Корпус. Материал металл особой прочности. На корпусе располагают патрубки для входа и выхода теплоносителя.
- Ротор или мотор. Его фиксируют к корпусу. Осуществляет забор и выброс жидкости под давлением.
- Крыльчатка. Задает направление движения теплоносителя в системе.
- Воздухоотводчик или гайка. Служит для отвода воздушной пробки.
Конструкция, которой обладает насос для теплого пола, не отличается особой сложностью. В зависимости от вида может несколько отличаться принцип работы.
Виды оборудования по устройству ротора
Выделяют два варианта такого устройства. Рассмотрим каждый вид отдельно:
- Оборудование с сухим ротором. Мотор и ротор не контактируют с водой, находятся в отдельной камере. Периодически будет требоваться техническое обслуживание такого двигателя. Соединение крыльчатки с ротором идет через резиновые прокладки или манжеты. Мощность оборудования позволяет обслуживать большие площади с хорошим напором. В результате высокий КПД до 80%, равнодушен к качеству воды. Недостатком является повышенное электропотребление, шум при работе, износ уплотнителей. Выпускается три вида конструкций: блочные, вертикальные, горизонтальные (консольные).
- Устройства с мокрым ротором. В таком оборудовании крыльчатка и ротор находятся в рабочей среде, которая одновременно является средством охлаждения и смазывающим материалом. Насос для теплого пола такого плана работает бесшумно, не требует технического обслуживания, есть возможность регулировать скорость подачи теплоносителя, невысокая цена, низкое энергопотребление. Но и недостатки имеются: потребуется отслеживать качество теплоносителя (чувствителен к жесткой воде), низкий КПД от 30 до 50%. Поэтому используется на обслуживании площадей не более 400 кв. м.
Как видно, применение зависит от выбранного агрегата.
Классификация по количеству скоростей
Существует два типа агрегата:
- Односкоростные. Простой вид оборудования, работает в одном режиме с определенным видом температуры.
- Регулируемые. Могут быть двухскоростные или более. Регулировка производительности дает возможность работать в различных режимах и в более широком диапазоне температур, что позволяет существенно экономить на энергозатратах.
Это еще одна характеристика, которая влияет на выбор устройства.
Коллекторные устройства
Эти системы можно выделить в отдельную категорию. Для чего предназначен коллектор с насосом? Теплый пол может быть смонтирован в одном помещении или в нескольких. При последовательном подключении в момент эксплуатации будет существенная разница температурного режима. Это основано на законах физики. Теплоноситель при движении по трубам будет отдавать температуру и остывать. Чтобы максимально снизить такие потери и добиться схожего микроклимата во всех помещениях, предусмотрен насос с коллектором. Он дает возможность параллельного подключения нескольких контуров.
Маркировка
Выбирая циркуляционный насос для теплого пола, следует уделить внимание характеристикам, отображенным на его корпусе. В строке «Тип» можно увидеть и буквы, и цифры:
- UPS – определяет управление или количество скоростей (UP – односкоростные, UPS – трехскоростные, UPE – электронное управление).
- Первая цифра обозначает диаметр патрубков входа/выхода в мм.
- Второе число указывает на высоту подъема теплоносителя. Это может быть 40, 60, 80, т. е. на 4, 6, 8 м или 0,4; 0,6; 0,8 атмосфер.
- А – наличие воздухоотвода или материал корпуса. А – воздухоотвод есть, В – корпус выполнен из бронзы, N – материал корпуса – нержавеющая сталь.
- Третья цифра обозначает монтажную длину.
В маркировку дополнительно вносятся данные об электропотреблении и прочие. Все зависит от производителя. Для выбора оборудования главной является строка «Тип» с условными обозначениями.
Преимущество использования
Монтировать можно теплый пол без насоса. Но в этом случае следует понимать, что отдача от такого устройства будет значительно ниже. Особенно заметно это на больших площадях. Естественная циркуляция теплоносителя по системе не дает возможности равномерного распределения температурного режима. И чем большей длины будет трубопровод, тем ниже температура будет доставаться отдаленным участкам.
Чтобы ее повысить в отдаленной комнате при последовательном подключении, придется увеличивать мощность всей системы отопления. А это будет создавать некомфортный климат в ближних комнатах и существенно поднимет затраты на энергоносители. Циркуляционный насос для теплого пола в значительной мере решает эту проблему.
Основы подбора оборудования
Чтобы грамотно подобрать подходящее устройство, надо соблюдать одно правило – технические характеристики системы должны совпадать с техническими свойствами насоса. То есть на выбор влияют следующие факторы:
- Производительность. Обозначается через кубометры/час. Этот показатель дает понимания того, сколько теплоносителя прокачивается за час работы. Для нормального функционирования весь объем должен трижды прокачиваться за этот период времени. Чтобы выполнить качественный расчет, потребуется учесть ряд факторов: длину и сложность магистрали; материал, из которого выполнен трубопровод; диаметр труб; объем жидкости в системе.
- Давление. Для небольших контуров это значение не так важно, как для трубопроводов большой длины со значительным количеством изгибов. Определившись с производительностью прибора, следует уточнить и рабочее давление — будет ли оно соответствовать техническому заданию.
- Энергопотребление. Лучше подобрать модель с модулем отключения и регулировки мощности. Это позволит значительно снизить затраты на эту статью при эксплуатации.
- Дополнительные характеристики. Важно уделить внимание эксплуатационным особенностям прибора. Благодаря этому в дальнейшем можно избежать ненужных затрат на ремонт.
В итоге можно сделать качественное и недорогое в эксплуатации отопление «теплый пол».
Насосом можно существенно повысить эффективность такого устройства. Но для этого важно рассчитать и правильно подобрать оборудование. Лучше довериться профессионалам. Или воспользоваться калькулятором в интернете.
Насосная группа
Комплектуется узел теплого пола:
- Насосом. Отвечает за циркуляцию жидкости по системе.
- Запорными клапанами. При наборе установленной температуры перекрывают подачу теплоносителя в систему.
- Перепускным клапаном. Предназначен для выравнивания давления между подачей и возвратом.
- Термостатическим и обратным клапанами. Обеспечивают поддержку постоянства температурного режима работы системы.
- Коллектором. Может присутствовать или нет в зависимости от схемы подключения (параллельная или последовательная).
Если правильно подключить водяной пол с тепловым насосом, то можно получить отдельный качественный источник отопления.
Особенности монтажа
Насос для теплого водяного пола может подключаться двумя способами:
- На подачу теплоносителя. В этом варианте есть большой недостаток, особенно характерный для напольных котлов. Вверху обогревательной системы может скапливаться воздух, который будет высасывать насос. В результате появляется вакуум и в этой части котел может закипеть. Это самый большой минус такого подключения. Некоторые профессионалы предлагают такой способ подключения, но при этом рекомендуют периодически выпускать воздушную пробку.
- На обратку. В таких схемах подключения теплоноситель будет с меньшей температурой. Это будет способствовать более длительному сроку использования насоса. А во время вталкивания воды насосом в котел воздушная пробка образовываться не будет.
Есть еще ряд важных моментов, которые следует соблюсти:
- Вал насоса следует устанавливать горизонтально. Если смонтировать в другом положении, то потеря производительности составит около 30%.
- Лучше установить насос на обводной линии системы. Это поможет с минимальными потерями решить проблему с отоплением, если насос сломался или прекратилась подача электроэнергии.
- В момент первого запуска воздушных пробок не избежать при заполнении системы жидкостью. Не следует пугаться. Через клапан или воздухоотвод надо выпустить пробку.
При подключении особых трудностей не возникнет, главное, правильно собрать комплект насосного оборудования.
Неисправности и ремонт
В тепловой системе, особенно в районах с жесткой водой, накапливаются соли, которые могут оседать на деталях насоса. Ротор может заклинить. И если после летнего отдыха помпа перестает работать, то следует аккуратно разобрать прибор, и протолкнуть отверткой крыльчатку. Поддалась и прокрутилась несколько раз — можно устанавливать систему обратно. Эта поломка характерна для систем с мокрым ротором. Особенно аккуратно следует осуществлять это с насосами, которые имеют керамические подшипники. Материал хрупкий, и в случае поломки придется искать подходящую запчасть, осуществлять капитальный ремонт.
Насос для системы «теплый пол с сухим ротором» должен проходит техническое обслуживание, смазывание деталей, замену прокладок. Срок службы таких устройств при правильном уходе длительный.
Профилактика неисправностей
Лучший ремонт – не допустить поломку. Для этого надо выполнить ряд действий:
- Перед запуском системы промыть ее. Это снизит количество мусора и накипи, который может осесть на деталях насоса.
- Заправить магистраль умягченной водой. Или при монтаже предусмотреть в схеме отопления водоумягчители или фильтры.
- На летний период воду не сливать из системы.
- За нерабочий сезон раза 3-4 запустить насос на некоторое время.
Все эти меры значительно снизят риск появления неисправности насоса.
Подключение насоса к теплому полу можно осуществить своими руками. Сложность составляет грамотный расчет и подбор оборудования. Лучше предусмотреть параллельную схему подключения с устройством коллектора. Это позволит наиболее равномерно прогревать все комнаты. Монтаж следует осуществлять согласно инструкции. От этого этапа зависит качество работы теплого пола. Еще одним важным моментом является профилактика неисправностей и правильная эксплуатация. Если учесть все эти нюансы, то качество дополнительного отопления позволит обеспечить максимально комфортный микроклимат в жилье с минимальными затратами на энергопотребление.
Итак, мы выяснили, что собой представляет насос циркуляционный для пола.
fb.ru
Основное отопление дома без котла и насоса СТРОИТЕЛЬ
Описание:
Энергосберегающие жидкостные теплые полы XL PIPE – уникальная новинка, с помощью которой Вы будете тратить всего около 3000 рублей в месяц на полное отопление коттеджа площадью 100м2!
ОСНОВНОЕ ОТОПЛЕНИЕ ДОМА БЕЗ КОТЛА И НАСОСА!
Что может быть лучше, чем отопление через теплый пол? Это самая комфортная система отопления, обеспечивающая оптимальное распределение тепла в помещении, когда ногам теплее, чем голове. Об этом хорошо знают в Корее, где пол используется для обогрева жилища не один век. Но если в прошлом источником тепла служил печной дым, то сегодня самыми современными и популярными системами отопления считаются энергосберегающие водяные теплые полы XL PIPE.
Система XL PIPE устанавливается под любые виды напольных покрытий и применяется в качестве основного источника обогрева в домах, квартирах, больницах, гостиницах и даже детских учреждениях. В случае применения системы XL PIPE, как основного отопления, вы сэкономите 30% -40% электроэнергии, по сравнению с обогревом пленочными или кабельными полами. Среднее энергопотребление составит от 17,4 Вт/м2.
В современном мире особое внимание уделяется новым технологиям, которые позволяют экономно использовать энергию и не наносят вреда окружающей среде. На протяжении тысячелетий теплый пол (ондоль) использовался в Корее как основной и единственный источник отопления домов. При этом воздух в помещении нагревался за счет сжигания древесного угля в пространстве под полом. По сей день теплый пол является типичной чертой корейского жилища. Однако в современных домах система ондоль в её первоначальном виде практически не используется, её заменяет усовершенствованные системы водяного и электрического отопления.
Компания разрабатывает и производит высокотехнологичное оборудование для теплых полов. Но по сравнению с аналогичными способами отопления, корейский теплый пол создает очень комфортную атмосферу в доме и поэтому заслужил особую популярность во всем мире. Сегодня продукция компании популярна в 20 странах мира, а в России филиалы компании открыты более чем в 100 городах. Системы отопления DAEWOO ENERTEC абсолютно безопасны как для окружающей среды, так и для здоровья человека, они не выделяют углекислый газ и не излучают электромагнитных волн. Кроме того, они очень экономичны.
Отопительные системы DAEWOO ENERTEC подарят вам комфорт и роскошь. Ходите по дому босиком, когда вам этого захочется!
Экономичный теплый пол XL PIPE
Наряду с производством пленочных и кабельных полов, одной из современных разработок компании стала уникальная электрическая система водяного отопления XL PIPE, которая существенно отличается от большинства аналогичных решений на рынке. КПД отопительной системы XL PIPE стремится к 100%! Благодаря чему значительно экономится электроэнергия. А прогретая стяжка с полами XL PIPE остывает в два раза дольше, чем стяжка с кабельным теплым полом. Основной элемент системы XL PIPE – это герметичная пластиковая труба высокой прочности, внутри которой находятся греющий элемент: семижильный кабель из сплава хрома и никеля, покрытый высокостойким тефлоном. Пространство внутри трубы заполнено специальной жидкостью. Принцип работы такого пола достаточно прост — при прохождении электротока по кабелю, происходит нагревание и резкое закипание жидкости. В основе же лежит использование особых свойств теплопроводящего вещества и инновационная система пузырькового кипения.
Применимость XL PIPE: основное отопление дома + обогрев лоджий
Выбирая теплые полы очень важно понимать, для какой задачи они вам необходимы. Если вам необходимо основное отопление в доме, то лучше системы XL PIPE вы просто не найдете. Система XL PIPE устанавливается под любые виды напольных покрытий и применяется в качестве основного источника обогрева или комфортных теплых полов для любых жилых помещений. К тому же, применяя систему XL PIPE в частных домах, вы сможете сэкономить место, избавившись от лишних батарей, котлов и коллекторов, а в городских квартирах никогда не зальете соседей и сэкономите плату на электроэнергии. Кстати, система водяных полов не требует никаких согласований, и вы с успехом можете оборудовать ею даже ваш балкон. За счет двухслойного покрытия кабеля отсутствует возможность утечки электрического тока. Покрытие помимо электробезопасности, обеспечивает прочность, пожаробезопасность, термо-, морозостойкость и огнеупорность. Запатентованное устройство поглощения избыточного давления предотвращает опасность повреждения труб от давления. Также система не боится запирания мебелью и тяжелыми предметами. Кстати, труба XL PIPE полностью ремонтопригодна. В случае поломки вам не нужно вскрывать напольное покрытие, все работы можно произвести через монтажную коробку.
КПД отопительной системы XL PIPE стремится к 100%!
Автономная работа системы!
XL PIPE не требует установки котла и циркуляционного насоса. Такая автономность позволяет устанавливать ее как в частные дома, квартиры так и в различные учреждения в качестве основного отопления. Работая абсолютно бесшумно XL PIPE напомнит о себе лишь комфортным теплом!
Энергосберегающий жидкостный теплый пол XL PIPE
Теплый пол + основное отопление
Экономичнее отопления газом (сжиженным ) и дизелем!
Без котла (бойлера), без насоса
Выберите действие:
Пожаловаться на публикацию
www.stroitel.club
Тёплый пол своими руками водяной без насоса
Лучшие новости сайта
Все о разработке водяного теплого пола своими руками.
В этом разделе я вам расскажу, как сделать теплый пол своими руками. Рассмотрим устройство теплых полов. С учетом моей многолетней практики, я расскажу как с экономить на материалах и как правильно сделать схему теплого пола. Вам не придется покупать дорогостоящее оборудование, в виде мини схем по смесительным узлам. Зная схемы и устройства работы теплого пола Вы на лету сможете сконструировать любую схему и решить задачу по теплому полу.
Эта статья является полным обучающим курсом по проектированию теплых водяных полов. Зная физику явлений, Вы поймете принцип обустройства теплых полов. Данная информация поможет избежать дорогостоящих проблем с вашим обустройством теплого пола.
В этой статье на простом и понятном языке рассказано, как сделать водяной тёплый пол своими руками.
В этом разделе вы узнаете:
- Какой шаг укладки применить?
- Какой длины трубопровод должен быть в контуре теплого пола?
- Как упаковать теплый пол в полу?
- Какое количество контуров теплого пола скомплектовать в одном смесительном узле?
- Виды смесительных узлов для теплых водяных полов?
- Какой насос применить для теплого водяного пола?
- Какие расчеты ведет инженер конструктор при создании схем теплых водяных полов?
- Как и во что уложить и какое основание сделать для теплого пола.
- Как залить теплый пол бетонной стяжкой.
В этом разделе я поясню все нюансы, которые встречаются на практики обычного монтажника.
Что касается температуры самой плиты теплого пола, то она не должна превышать 30 градусов. Вообще этого бывает достаточно. Если в смесительном узле имеется термостатический клапан с термоголовкой, то установка необходимой температуры настраивается поворотом термоголовки. Обычно до 60 градусов. Имейте ввиду что температура воды в теплом поле от реальной температуры плиты теплого пола может отличаться на 10 — 20 градусов.
Самое простое в этой задаче — это способ укладки трубы на поверхность будущего теплого пола.
Но и здесь новички-монтажники умудряются сделать не правильно!
И так, что касается укладки теплого пола, то рекомендую способ улитки, этот способ улитки самый экономичный с точки зрения гидравлических потерь. Так как при таком способе, жидкость в трубе протекает с меньшим количеством поворотов, что увеличивает хорошее протекание жидкости в трубах. Также пол по всей площади греет равномерно.
Например:
Чтобы правильно начертить-разметить комнату необходимо, чтобы число продольных полос было четно. То есть 8,10,12,14,16 и так далее.
Например здесь 16 продольных и 18 поперечных полос (Поперечные не влияют на положение ниток.).
Данная поверхность пола не прямоугольная и имеет фаску. В таких случаях размечаем параллельные фаске линии с таким же шагом, что и клетка.
И вот что получилось:
Если длинна труб превышает допустимое значение, то необходимо на эту же поверхность уложить два контура. Например:
Если имеется препятствие, то следует обойти таким методом:
Важно по возможности сделать длины контуров одинаковыми.
Также есть практический совет, возле наружных стен делать шаг укладки меньше в 1,5 раза, если общий шаг укладки не равен 10мм. Так как пол у наружных стен быстрее расходует тепло.
Пример:
Что касается объема площади?
По своему опыту скажу, что площадь может быть и 6х6 метров. А может и10х5 метров. Во многих местах и в справочниках пишут, что площадь теплого водяного пола не должна превышать 40м2.
Но я так скажу! Если длинна пола превышает 10 метров, то следует разделить такой пол на части. Так как нагреваемый пол при повышении температуры начинает удлиняться.
На места разделения полов укладывают демпферную ленту. Лучше чтобы целый контур был в пределах части теплого пола. То есть, чтобы сам контур не пересекал демпферную ленту.
Если у Вас большая площадь и необходимо ее разделить, то следует сделать так, чтобы на каждую часть был отдельный контур. Контур — это труба уложенная одной веткой. То есть это фактически одна труба, по которой бежит один поток. То есть демпферная лента должна разделять потоки. Через демпферную ленту не должно проходить много труб. Где демпферная лента — там идет постоянное изменение расстояния между теплыми полами. И нахождение там труб может им навредить.
В местах прихода труб в саму обогреваемую плиту, необходимо уложить в какую либо изоляцию. Это может быть теплоизолирующий энергофлекс, или гофрированная труба. Чтобы в этом месте происходило сглаживание движение плиты от трубы.
Основание теплого пола
Сейчас расскажу разницу между идеальным теплым полом и так себе:
Вариант так себе:
Основание пола не ровное и имеет погрешность до 5 см. То есть где то нормально, а где то и на 5 см ниже, а то и на 10см. Утеплитель имеет толщину от 2 до 5 мм. Толщина бетонной стяжки от 5 до 15 см.
Вариант так себе относится к низко качественной работе теплого пола. Раньше многие так делали. Пол скажем греет не равномерно и плохо. Тепло уходит в плиту, тем более через тонкий утеплитель. Такой утеплитель допускается в квартирах, да и то такой утеплитель не экономично действует на пол. Тепло уходит в нижний несущий пол!
Идеальный теплый пол!
Основание пола ровное и имеет погрешность до 3 см. Утеплитель от 25 мм, это обычно пенопласт или пенополистирол (С плотностью не менее 35кг/м3 для крепости). Толщина бетонной стяжки от 5 до 10 см. В стяжке необходимо уложить металлическую сетку для крепости пола. Также металлическая сетка может играть и сглаживающий эффект передачи тепла по полу. Металлическую сетку нужно уложить под трубой, для усиления можно добавить сетку сверху трубы. По краям пола нужно уложить демпферную ленту, для компенсации расширения пола.
Что касается трубы для теплого пола.
Труба может быть в основном из металлопластика или сшитого полиэтилена. Существует большой вопрос, а что лучше металлопластик или сшитый полиэтилен. Многие продавцы и мастера утверждают, что лучше для теплого пола укладывать специальную трубу для теплого пола из сшитого полиэтилена.
Я же по своему опыту могу утверждать, что разница очень маленькая и кпд почти не отличается. Так что это сильно раздутый миф про сшитый полиэтилен, к тому же стоит дорого. Могу лишь утверждать, что чем выше внутренний диаметр трубы для теплого пола, тем лучше. Так как обогрев лучше и сопротивление потоку ниже. Что улучшает КПД теплого пола. Что касается теплопередаче, то без сомнения у сшитого полиэтилена оно выше! Но стоит ли оно свеч? Нет! Во первых разница очень маленькая, а во вторых законы из расчеты теплотехники, вполне допускают теплопередачу. Это то что скорость теплопередаче вполне достаточно для обогрева бетонного пола. Так как сам бетонный пол не переносит тепло так быстро, как хотелось бы. Если бы бетонный пол переносил тепло мгновенно, тогда эффект был бы значительным.
Также можно использовать медную трубы и трубу из нержавеющей гофрированной стали. Но эти трубы очень дорогие и монтаж таких труб очень трудоемкий. Так что эти трубы отпадают однозначно!
Уложение теплого пола имеет такую последовательность:
- На горизонтальный пол с погрешностью 3 см укладывается утеплитель (Пенополистирольная плита) толщиной от 2,5 до 10 см.
- На пенополистирольную плиту ложиться полиэтиленовая пленка или фольгированный пенофол толщиной 5-10мм.
- Далее ложится сетка с шагом от 5-150 мм. Толщина проволоки 2-4мм.
- Далее укладывается труба с определенным шагом.
- Возле стен и на границе уложить демпферную ленту.
Пояснение к каждому элементу пирога теплого пола:
1. Пенополистирольная плита служит для того, чтобы предотвратить теплопотери в низ в бетонную плиту или в нижнее помещение. Пенополистирольная плита должна быть с параметрами не менее 35 кг/м3 для предотвращения разрушений при нагрузке сверху. Обычно для первого этажа имеющий не отапливаемое нижнее помещение (подвал и прочее) монтируется пенополистирольная плита толщиной не менее 100мм. Для последующих этажей 50мм. Иногда допускается укладка толщиной до 50мм. Для допустимого обогрева пола толщина пенополистирольной плиты не должна быть ниже 30мм. Пенополистирольная плита ложиться на ровную поверхность пола без зазоров, если имеются неровности в полу, то такие перепады засыпают отсевом и выравнивают его по всему полу и потом на отсев ложиться пенополистирольная плита.
2. Вторым слоем на пенополистирольную плиту ложиться либо фольгированный пенофол либо полиэтиленовая пленка. Поскольку фольгированный пенофол это вспененный полиэтилен покрытый фольгой — имеет, как и полиэтиленовая пленка, гидроизоляционный эффект. Этот эффект предотвращает паропроницаемость между бетонным полом и пенополистирольной плитой. Если влага не переходит из одной среду в другую, то улучшается климат по теплоизоляционным свойствам. Этот эффект гидроизоляции уменьшает теплопотери в низ, тем самым экономиться тепловая энергия. А фольгированный слой дополнительно увеличивает изоляцию по паропроницаемости, как известно, что различные металлы имеют большое сопротивление по проницаемости различных веществ. Также не мало важным эффектом фольги обладает его возможность отражать тепловые лучи, что тоже добовляет эффект уменьшения теплопотерь вниз. Также полиэтиленовая пленка и фольга уменьшают проникновение вредных веществ от пенополистиролной плиты, так как известно, что пенополистирол это вредное вещество. Как не крути, но в малых количествах придется дышать парами пенополистирола. Еще одним нюансом будет — это то, что открытая фольга в пенофоле при заливке бетонной стяжке может быстро разрушиться химическими реакциями раствора. Грубо говоря раствор съедает фольгу, если она очень тонкая. Узнавайте у продавцов о фальгированном пенофоле специальным для теплого пола мокрым способом (то есть бетонного теплого пола). Фольгированный пенофол для теплого пола может быть защищен, от разъедания фольги либо быть достаточно с толстым слоем фольги.
3. Стальная сетка с определенным шагом служит для того чтобы укрепить основание бетонной стяжки теплого пола. Находящаяся в нижнем слое сетка при деформации бетонной стяжки идет на растяжение, и тем самым увеличивает крепость бетонной стяжки на излом. К тому же сетка дает возможность закрепить на ней трубу. Крепиться труба к сетке через пластиковые хомуты, которая продается в электромагазинах. Сама сетка крепиться дюбель-гвоздями определенной длины в сквозь пенеополистирольную плиту к плите перекрытия. Сетка к дюбель-гвоздям соединяется через металлическую монтажную ленту.
4. Демпферная лента служит для предотварщения разрушений бетонной стяжки от теплового расширения самой бетонной стяжки.
Заливается качественной бетонной стяжкой (Цемент + отсев. Крупный камень не ложите.). Чтобы стяжка не потрескалась, необходимо первую неделю поливать ее утром и вечером холодной водой или что лучше купите специальный для этих целей пластификатор, который разбавляется с бетонным раствором и препятствует растрескиванию. На худой конец проконсультируйтесь у специалистов как делать ровную стяжку, чтобы она не потрескалась. Продаются специальные присадки или добавки. Толщина стяжки не более 5-7см. расстояние от трубы от 1-3см при условии, что сверху еще будет керамическая плитка. Если не будет плитки, то от трубы оставьте 3-4см. При высыхании бетонной стяжки не следует пускать по трубам горячую воду. Лучше просто оставьте под давлением в 1,5-4 атмосферы. То что пишут надо держать до 6 атмосфер и прочее, тоже раздутый миф. Все работает и не портится. А давление Вы оставьте для того чтобы обнаружить брак трубы и обнаружить протечки во время повреждения трубы. И все…
Не переживайте на счет стяжки! Стяжка пойдет любая. И не слушайте всякие фирмы которые пиарят свои технологии. Якобы у них пол хорошо передает тепло и прочее. Это опять раздутый миф. Разница опять же очень маленькая. Из-за каких то маленьких процентов, такой пиар раздувают мама не горюй!… Главное чем меньше толщина стяжки бетонного пола тем лучше передается тепло. Так как бетон сам по себе играет хоть и маленькую но теплоизоляцию. То есть сопротивляется теплопередаче. Паркет на теплый пол не ложите. Паркет тоже своего рода теплоизолятор, но уже по сильнее бетона и керамической плитки. На теплый пол однозначно ложите керамическую плитку. Допускается ложить паркет только в теплых краях. У нас же с 30 градусными морозами так нельзя. Вы конечно можете положить паркет или дерево. Но Вы сильно теряете исходящее тепло от пола. Поэтому следует добавить мощности обогрева на другие отопительные приборы(радиаторы).
Какой длины трубопровод должен быть в контуре теплого пола?
Все зависит от конкретного случая. Ниже я Вам покажу таблицу где указано сопротивление движению воды в трубах. И Вы должны понять какую длину подобрать!
Для тех кто боится считать — опыт из практики:
Для 16 трубы металлопластика до 80 метров.
Для 20 трубы до 100 метров.
Если смотреть с точки зрения экономии, то чем короче труба тем экономичнее получается система теплого пола, и не важно, что много контуров получается.
Если разумно, то для 16 трубы это 65 метров.
Для 20 трубы 75 метров.
Так как насос потребляет энергию, то целесообразно тратить энергию меньше. Из гидравлики следует, что чем медленнее бежит вода в трубе тем легче она бежит. Чем длиннее труба тем сильнее сопротивляется движению поток. Так что существует такой предел, что насос не может дать такой напор превышающий сопротивление движению. В следствии этого расход в трубе маленький на столько, что становится не достаточным для обогрева теплого пола.
Для хорошего обогрева пола в 10 м2, необходим расход не менее 2литра/минуту.
Соответственно 20м2 необходимо не менее 4 литров/минуту. Для 20м2 Необходимо уже 2 и более контуров. Если это два контура, то на каждый контур 2литра/минуту и того 4 литра минуту на пол из двух контуров.
Если Вы уложите слишком длинную трубу, то Вы получите не совсем экономичную систему. Во первых сопротивление движению будет большим и Вам для разумного расхода придется использовать более мощные насосы и соответственно терять дополнительную энергию. Если расход будет не достаточным, то Вы не получите необходимого тепла на теплый пол. Он попросту будет слабо греть. Так как по трубе, будет проходить мало теплой жидкости.
Ниже будет конкретный алгоритм вычисления длины трубопровода, но после того как Вы познакомитесь со схемами, которые предназначены для теплых полов.
Далее график для металлопластиковой трубы (Для трубы из сшитого полиэтилена тоже подходит):
Этот график взят из надежных источников, разработан мировым лидером в области систем водоснабжения и отопления. Данные указаны длиной трубы в один метр. Сам проверил со своими формулами. Скажу, что 1 метр напора = 10 000 Па. А для вашей задачи: Результат потерь напора умножаете на количество метров и получает общую потерю напора на трубу.
Личные расчеты:
Таблица 1
Виды смесительных узлов для теплых водяных полов.
Смесительный узел играет очень важную роль в системе водяных теплых полов. Смешивает основной поток с потоком для контуров теплого пола. Чтобы получить дополнительный расход на контура теплого пола.
Хотите узнать, как сделать теплый пол без смесительного узла?
Такой теплый водяной пол можно сделать, только через трехходовой клапан, и без насоса! О том, как сделать теплый пол без дополнительного насоса с помощью трехходового клапана, можно узнать здесь: Трехходовой клапан и схемы теплых полов.
Схема узла для теплого пола может быть нескольких вариантов. Рассмотрим самый простой наглядный вариант, где нет особых заморочек.
Схема подключения теплого пола.
Давайте теперь рассмотрим смесительный узел теплого пола более детально:
Пропускной клапан служит для того, чтобы пропускать или не пропускать тепло от котла в систему теплого пола. Обычно туда ставится термостатический клапан с термоголовкой. У термоголовки должен быть прикладной датчик. Этот датчик прикладывается на подающий трубопровод в контура теплых полов.
У этого вида байпас должен повторять основной диаметр прохода теплоносителя.
Недостаток данной системы, в том что при остановке контуров, насосу будет нечего качать. Но эта проблема решается добавлением второго байпаса между подающим и обратным коллектором.
Схема 1: Последовательный тип смешивания.
Кстати за место пропускного клапана можно установить балансировочный клапан или обычный шаровый кран, но этот вид требует постоянного контроля. Поэтому не рекомендуется.
Единственное и пока на сегодняшний день бесполезное достоинство данной схемы является то, что выходящий поток из смесительного узла в сторону котла, более пониженный, и равен температуре пола. Такой подход с точки зрения теплотехники более правильный и более производительный.
Схема 2. Параллельный тип смешивания.
В любых схемах за место байпаса можно поставить перепускной клапан. Он служит для того, чтобы в определенном напоре начать через себя пропускать поток. Это дает возможность постоянно не гонять воду через байпас, когда контура задействованы. Когда контура все закрыты, то перепускной клапан начинает пропускать через себя жидкость, чтобы насос не работал в нагрузку, тем самым экономил электроэнергию. А собственно, в каких случаях контура должны закрываться? Дело в том, что в продвинутых домах стоит климат контроль, который по мере нагревания может перекрывать контура. А когда возникнет ситуация, при котором все контура закроются, тут то и приходит на помощь байпас с перепускным клапаном. Он помогает насосу давать расход. Если насос не качает в нагрузку, он и потребляет меньше энергии. Перепускной клапан имеет механическую настройку необходимого напора, при котором он начинает пропускать жидкость. Вообще существуют и электрические операции, при котором насос просто выключается. Но об этом сложном явлении как-нибудь в другой раз.
Недостаток данной системы это то, что выходящий поток из смесительного узла равен температуре теплоносителя входящего в теплый пол. Температура которая входит в контур теплого пола равна температуре выходящего из смесительного узла в сторону котла.
Схема3. Параллельный тип смешивания.
Схема 3 многим напоминает схему 2, и практически по функционал мало чем отличается. Единственное отличие может возникнуть в простоте сборке.
Пропускной (термостатический) клапан, необязательно должен быть с хорошей проходимостью или большого диаметра, так как показывает практика, то проходимость, может сильно отличатся и это не портит смесительный узел. Так как насос бывает сильно влияет на расход через пропускной (термостатический) клапан. Своей затягивающей силой он очень сильно увеличивает расход воды через пропускной (термостатический) клапан. К тому же примерно расход через клапан в два раза ниже расхода насоса.
Чтобы в данной схеме соблюсти хорошую проходимость необходимо иметь хорошую проходимость через циркуляционный насос. То есть само кольцо от обратного коллектора через насос до подающего коллектора имело хороший идеальный проход без заужений. В эту схему нельзя устанавливать трехходовые клапаны с термочувствительным элементом. Так как трехходовые клапаны имеют маленькую проходимость в следствии этого большие местные сопротивления.
Подробнее о трехходовом клапане.
Трехходовой клапан следует ставить так(См. Схема 4):
Схема 4. Последовательный тип смешивания.
Сам по себе трехходовой клапан предназначен пропускать воду от одной ветки в остальные две ветки в зависимости от поворота клапана. То есть в данную схему нужно ставить не такой клапан, который открывает или закрывает одну линию. А плавно открывая одну линию и закрывая другую. Линия, где находится насос — она всегда открыта. При охлаждении датчика клапана открывается линия входящего тепла от котла и закрывается линия байпаса. При нагревании происходит обратная процедура. Только такой выше описанный клапан монтируется в данную схему 4.
Я уже говорил, что сами эти трехходовые клапаны с термостатом имеют плохую проходимость, и использовать их вообще не рекомендую. Только для малой производительности. В пределах 3 — 4 контуров теплого пола. Но существуют схемы, которые позволяют поставить любой трехходовой клапан. Подробнее о схемах ниже.
Ну если у Вас уже имеется трехходовы клапан с выносным датчиком, то для хорошей прокачки можно его поставить как указано на схеме 5. Но это не идеальная схема. Существуют и другие схемы.
Схема 5. Параллельный тип смешивания.
Если трехходовой без выносного датчика, то по схеме 4. Так как при схеме 5 на вход датчика не приходит остывшая вода из контуров. И он будет при поступлении горячей воды сразу закрываться.
А теперь подробней о схемах.
Выше описанные схемы мы рассмотрели как некий вариант для вашего воображения. Чтобы вы могли понять, какие варианты сборки существуют для смесительных узлов.
Ниже будут схемы куда лучше…
На сегодняшний день обнаружил одну важную особенность, что самое разнообразное количество схем разделяются на два типа смешивания воды (теплоносителя).
Это: Параллельный тип смешивания и последовательный тип смешивания смесительного узла.
Чтобы это понять, давайте рассмотрим наглядную схему.
Стрелками обозначены потоки воды. Пол — это контур теплых полов.
Как Вы думаете, какая схема более производительная? Конечно последовательная! В последовательной схеме, весь расход насоса идет в контура теплых полов. А в параллельной схеме, расход насоса делится с расходом притока входной циркуляции. Поэтому если Вы хотите выжать максимум полезного действия из насоса на контура теплых полов, то однозначно, нужна последовательная система смесительного узла. И это не обсуждается.
Также при последовательной схеме можно уложить на много больше контуров в одном смесительном узле. Так как расход на полы можно получить на много больше. В то время как на параллельном типе расход насоса делиться с другим кольцом циркуляции.
Чтобы Вы поняли, какие схемы относятся к последовательным, и параллельным типам, рассмотрим схемы.
Параллельные схемы смесительных узлов:
Последовательные схемы смесительных узлов:
Последовательная система лучше тем, что весь расход насоса уходит в контура теплых полов. Этот поток не делится. Тем самым дает возможность сделать в одном смесительном узле большое количество контуров.
Хотите узнать, как сделать теплый пол без смесительного узла?
Такой теплый водяной пол можно сделать, только через трехходовой клапан, и без насоса! О том, как сделать теплый пол без дополнительного насоса с помощью трехходового клапана, можно узнать здесь: Трехходовой клапан и схемы теплых полов.
Не забывайте! В схеме не обозначены автоматические спускники воздуха. Я надеюсь, что это не составит труда понять куда ставить их. Ставьте на высокую точку подающего и обратного коллектора. Имейте ввиду и подумайте, чтобы ротор насоса не крутился в воздухе.
Мы не рассмотрели вариант, когда имеется один контур для теплого пола. В принципе и такой смесительный узел вполне возможен для одного контура. Только диаметр труб можете уменьшить, да и мощность и расход насоса можно уменьшить в три раза. Подробнее ниже.
О том, какие схемы применить к трехходовым клапанам Вы можете узнать здесь.
Какой насос применить для теплого водяного пола?
На рынке продаются стандартные циркуляционные насосы для отопления с расходом 2,5 м3/час, это около 40 литров/минуту и напором до 6 метров. Чем выше напор насоса, тем быстрее будет расход в контуре теплого пола. Для теплого пола существует обычный стандарт насоса с параметрами(2,5м3/ч с напором 6м.).
Если на насосе указано, что расход у него 40 литров в минуту, то на деле это не означает, что он будет так качать. Все зависит от пропускной способности самой систему или узла теплого пола. Допустим если у Вас много длинных контуров, то они дают достаточное сопротивление движению, вследствие этого расход насоса уменьшается.
Примерный график всех насосов:
А теперь реальный график такого насоса(2,5м3/ч с напором 6м.):
График 1.
А теперь соображайте, чем лучше пропускаемость, тем меньше напор появляется на контурах. Чем больше веток(контуров) в одном смесительном узле, тем выше расход и само собой разумеется, тем меньше напор на всех контурах. Так что нужно не перегнуть палку! Если для хорошей прокачки контура необходим напор в 3 метра, то необходимо по графику соблюсти расход и не увеличивать количество контуров.
Как узнать весь расход в смесительном узле для параллельной схемы?
1. Посчитать в каждой ветке рекомендуемый расход. Все расходы веток сложить.
2. Посчитать какое количество потерь будут производить все ветки(контура). А на самом деле — количество потерь сможет нам найти постоянный расход приходимого тепла в смесительный узел. Он обычно равен около 40-100% от всех расходов контуров. То есть если вся сумма расхода контуров равна 15 литрам/минуту, то расход приходящего тепла равен примерно 6-15 литрам/минуту. Это зависти от разницы температур от входящего и установленного термоголовкой температуры. Также влияют на расход и теплопотери самого пола. То есть если температура от котла идет 60 градусов, а в смесительном узле установлено 40 градусов, то расход будет примерно 40%. А если температура от котла идет 75 градусов, а в смесительном узле установлено 40 градусов, то расход будет примерно 25%. Также нужно учесть и байпас, если он имеется, то через него тоже идет постоянный расход. Еще прибавьте около 6 литров/минуту на байпас. Если трубы длинные, то соответственно и теплопотери большие, и соответственно термоголовка начинает пропускать больше тепла, а это значит, что увеличивается расход насоса, и соответственно напор падает.
А если совсем трудно понять, то считайте так:
1. Посчитать в каждой ветке рекомендуемый расход. Все расходы веток сложить.
2. Все расходы веток умножьте на 2. То есть если расход всех контуров равен 15, то общий расход самого насоса смесительного узла должен составить 30 литров/минуту.
Как узнать весь расход в смесительном узле для последовательной схемы?
1. Посчитать в каждой ветке рекомендуемый расход. Все расходы веток сложить. Так как при последовательной системе расход насоса идет полностью на контура теплых полов, то достаточно сложить только расход всех контуров.
Полученный расход сверяйте с графиком и находите выдаваемой графиком потерю напора. На горизонтальной координате имеется шкала расхода, от нужной шкалы поднимаетесь вверх упираетесь на линию и далее горизонтально движетесь влево и получаете шкалу напора. График для других насосов оригинальный. Просто сами вручную можете нарисовать шкалу вашего насоса и нарисовать в нем дугу как показано на графике 1. Так как все насосы работают по стандартной кривой. И в зависимости от напора можно выбрать по таблице 1 необходимую длину трубопровода.
Учтите еще одну особенность! ! Это то, что если насос с напором 6 метров, на деле как обычно выдает меньше напора, например 5 метров. Если расход 40 литров/минуту, то может выдавать 30 литров/минуту. Это происходит в силу разных факторов: Потеря напряжения в сети. Местные сопротивления самих узлов трайников. Кое-какие заужения в трубах, повороты и прочее. И в итоге нужно считать примерно на 15% ниже ресурс насосов. Только тогда Вы сделаете правильно.
Вот такой график практического опыта для насоса с параметрами(2,5м3/ч с напором 6м.):
График 2.
Как узнать какую длину трубы необходимо для теплого пола.
Чтобы это посчитать необходимо знать расход воды в трубе при заданной длине трубопровода на определенную площадь пола. Также на 10м2 должен быть расход не ниже 2 литров/минуту. Зависит от теплопотерь. Ниже будут подробности.
По таблице 1 найти потерю напора. И чтобы напор на входе в контур не был ниже потери напора по трубе при определенной скорости течения жидкости.
А напор в одном смесительном узле одинаковый для всех контуров. Насос создает один напор на все контура. Напор вычисляем по графику2.
Не запутайтесь! Это комплексное решение. Ниже прочитайте про шаг укладки и тогда должно быть понятно про длину трубопровода. Главное не сделать слишком длинную трубу.
А если по простому, то на каждые 10 метров 16 трубы необходимо качать минимум 0,4 литра/минуту. То есть на 50 метров трубы необходимо 2 литра/минуту. А на 80 метров трубы 3,2 литра/минуту.
Комплексное решение таково:
Напор насоса(см. гафик2) не должен быть ниже потери напора по длине трубопровода при определенном расходе одного контура.Потерю напора в трубопроводе одного контура находите по таблице1.Напор насоса находится по графику2 при определенном расходе всего смесительного узла.
Таблица 1
Имейте ввиду, что если Вы к себе установите смесительный узел, на без того забитую систему отоплению, то возможно этим смесительным узлом вы отберете у котла некоторый расход, что может повлиять на расход в других ветках отопления. Эта проблема решается добавлением гидравлического разделителя, с дополнительными насосами.
Что касается потерь на загибах трубы, то они очень маленькие, например, чтобы получить сопротивление в 1 метр при скорости 0,44 метров/секунду необходимо 200 поворотов(90градусов). Как правило на одном контуре их может быть максимум 40.
Очень важно знать, что если Вы используете незамерзающую жидкость в системе отопления, то незамерзающая жидкость по вязкости отличается от воды от 30% до 50%. А это означает, что вода по трубам будет бежать еще медленнее. И расчеты нужно вести уже другие. Необходимо добавить запас мощности насоса примерно на 20% или укоротить трубы на 20%. Также имейте ввиду, что теплоемкость незамерзающей жидкости опять меньше примерно на 20%. Это значит эта жидкость будет меньше переносить тепла.
Какое количество контуров теплого пола скомплектовать в одном смесительном узле?
Если опираться на золотой опыт:
По опыту скажу насос с расходом до 40литров/минуту и напором 6 метров для параллельной системы, достаточно до 8 контуров длинной трубы не превышающий 65 метров для 16 трубы.
Для последовательной системы, достаточно до 12 контуров длинной трубы не превышающий 65 метров для 16 трубы.
Если Вы решили сделать трубы длинной 80 метров, то следует сделать 5 контуров для параллельной системы, 8 контуров для последовательной системы, на один такой насос.
Только не вздумайте контур делать длинной 100 метров 16 трубы, очень не экономично! На своем личном опыте проверено!
Да и вообще не рекомендую даже 20 трубу делать 100 метров! Лучше сделайте два контура по 50 метров из 16 трубы.
Рекомендую не превышать длину трубы более 80 метров. Даже для 20 трубы. Трубы используйте только 16. Они гнутся хорошо. И шаг укладки становится доступным для сильного изгиба.
А если Вы решили посчитать более конкретно.
Алгоритм решения данной задачи для параллельной системы.
Допустим, у Вас получилось 6 контуров теплого пола. С длиной, Вы тоже определились и оно около 80 метров. С расходом Вы тоже определились и оно равно 3 литра/минуту на каждую ветку.
А теперь считаем:
Смотрим таблицу 1.
80 метров трубы с расходом 3 литра/минуту дает потерю напора 2,16 метров.
Считаем весь расход: Количество контуров с расходом 3 литра/минуту дают общий расход 18 литров/минуту. Этот расход умножаем на 1.5 раза и получаем 27 литров в минуту. Сверяемся с графиком 2 (см. выше). По графику видно, что напор получается около 1.3 метра. Смотри таблицу 1 и видим, что расход на ветке в 80 метров будет находится в пределах 2 литров/минуту.
Чтобы достичь в каждой ветке расхода в 3 литра/минуту, нужно либо увеличить мощность циркуляционного насоса, что не экономично. Либо разделить 6 веток пополам и на каждые 3 ветки поставить один смесительный узел. Что тоже не экономично. Остается следующий вариант. Укоротить трубы в контурах и увеличить количество веток. Такой вариант более экономичный. С точки зрения затрат на перекачку воды по веткам.
У нас 18 литров/минуту необходимо! Мы можем 18 поделить на 8 веток и получить расход 2.25 литров/минуту на каждую ветку. Длинна ветки уже будет около 65 метров. Но длины каждой ветки могут быть разные. Тогда необходимо высчитать, где какой расход необходим. Но об этом чуть позже. Так как вы еще не знаете, как определить шаг укладки.
Алгоритм решения данной задачи для последовательной системы.
Допустим, у Вас получилось 6 контуров теплого пола. С длиной, Вы тоже определились и оно около 80 метров. С расходом Вы тоже определились и оно равно 3 литра/минуту на каждую ветку.
А теперь считаем:
Смотрим таблицу 1.
80 метров трубы с расходом 3 литра/минуту дает потерю напора 2,16 метров.
Считаем весь расход: Количество контуров с расходом 3 литра/минуту дают общий расход 18 литров/минуту. Сверяемся с графиком 2 (см. выше). По графику видно, что напор получается около 2.5 метра. Смотри таблицу 1 и видим, что расход на ветке в 80 метров будет находится, в пределах 3 литров/минуту. Итог: Подходит!
Как определить шаг укладки теплого пола?
Чтобы определить шаг укладки необходимо знать теплопотери самой комнаты. И какого качества тепла Вы хотите получить. Но мы не будем вычислять теплопотери дома, так как этого можно не делать. Достаточно золотого опыта.
Из золотого опыта, для сурового климата России в пределах -30 градусов для нормально утепленного дома:
Если Вы хотите получать напольное отопление без других источников обогрева, то шаг укладки должен быть не менее 10-12 см. Если в сочетании с батареями(радиаторами), то 15-20см. Делать шаг укладки больше не рекомендую, так как ощущается разница обогрева по площади пола.
Что касается длинны трубы, то это зависит от необходимого расхода воды по трубе и достаточного напора, для ее прокачки.
Что касается расхода:
При шаге укладки в 10-12см на 10м2 необходимо качать 2-3 литров/минуту.
При шаге укладки в 15-20см на 10м2 необходимо качать 1-2 литров/минуту.
А если по точнее, то на каждые 10 метров 16 трубы необходимо качать 0,4 литра/минуту. То есть на 50 метров трубы необходимо 2 литра/минуту. А на 80 метров трубы 3,2 литра/минуту. Чем длиннее труба тем больше теплопотерь в контуре.
То есть чем короче труба, тем меньше можно качать воды по трубам. Пропорционально теплопотерям. Но чем выше расход в трубах, тем кпд пола больше.
Кстати если у Вас в смесительном узле более 3 контуров, то обязательно нужно брать коллектора с расходомерами. Данные коллектора показывают расход в каждом контуре. И если контура по своей длине сильно отличаются и шаг укладки в том числе, то будет возможность отрегулировать каждый контур по количеству расхода. Так как там есть вращающий элемент, который приводит клапан для необходимого пропуска воды.
На рынке продаются зарекомендовавшие себя смесительные узлы:
combimix
dualmix
Источник: http://schoollremonta.ru/homestead/tyoplyy-pol/tyoplyy-pol-vodyanoy
Похожие статьи:
sad-palisad.ru
Водяные теплые полы без насоса своими руками
Лучшие новости сайта
Все о разработке водяного теплого пола своими руками.
В этом разделе я вам расскажу, как сделать теплый пол своими руками. Рассмотрим устройство теплых полов. С учетом моей многолетней практики, я расскажу как с экономить на материалах и как правильно сделать схему теплого пола. Вам не придется покупать дорогостоящее оборудование, в виде мини схем по смесительным узлам. Зная схемы и устройства работы теплого пола Вы на лету сможете сконструировать любую схему и решить задачу по теплому полу.
Эта статья является полным обучающим курсом по проектированию теплых водяных полов. Зная физику явлений, Вы поймете принцип обустройства теплых полов. Данная информация поможет избежать дорогостоящих проблем с вашим обустройством теплого пола.
И это бесплатно!!! Эту статью разработал специалист с многолетним стажем работы и опытом монтажа теплого пола.
Также данная статья будет являться постоянным справочником для тех, кто занимается и .
В данной статье будут наглядные примеры и соединительные узлы теплых полов. Так же Мы по решаем типовые задачи.
Расскажу на простом понятном языке для чайников, как сделать монтаж теплого пола!
В этом разделе вы узнаете:
Какой шаг укладки применить? Какой длины должен быть в контуре теплого пола? Как упаковать теплый пол в полу? Какое количество контуров теплого пола скомплектовать в одном смесительном узле? Виды для теплых водяных полов? Какой насос применить для теплого водяного пола? Какие расчеты ведет инженер конструктор при создании схем теплых водяных полов? Как и во что уложить и какое основание сделать для теплого пола. Как залить теплый пол бетонной стяжкой.
В этом разделе я поясню все нюансы, которые встречаются на практики обычного монтажника.
Чтобы раньше времени Вы не устали! Мы будем идти от простого к сложному. В данной статье мы больше рассмотрим практический опыт. Посмотрим график зависимости. Маленько посчитаем. А кто захочет считать очень точно, то можете посетить и познакомиться с моим лично-разработанным разделом Гидравлики и теплотехники . В этом разделе больше физики и математики. В общем кто хочет считать всю физику процессов водоснабжения и отопления, то без Вам не обойтись.
Что касается температуры самой плиты теплого пола, то она не должна превышать 30 градусов. Вообще этого бывает достаточно. Если в смесительном узле имеется термостатический клапан с термоголовкой, то установка необходимой температуры настраивается поворотом термоголовки. Обычно до 60 градусов. Имейте ввиду что температура воды в теплом поле от реальной температуры плиты теплого пола может отличаться на 10 — 20 градусов.
Самое простое в этой задаче — это способ укладки трубы на поверхность будущего теплого пола.
Но и здесь новички-монтажники умудряются сделать не правильно!
И так, что касается укладки теплого пола, то рекомендую способ улитки, этот способ улитки самый экономичный с точки зрения гидравлических потерь. Так как при таком способе, жидкость в трубе протекает с меньшим количеством поворотов, что увеличивает хорошее протекание жидкости в трубах. Также пол по всей площади греет равномерно.
Например:
Чтобы правильно начертить-разметить комнату необходимо, чтобы число продольных полос было четно. То есть 8,10,12,14,16 и так далее.
Например здесь 16 продольных и 18 поперечных полос (Поперечные не влияют на положение ниток.).
Данная поверхность пола не прямоугольная и имеет фаску. В таких случаях размечаем параллельные фаске линии с таким же шагом, что и клетка.
И вот что получилось:
Если длинна труб превышает допустимое значение, то необходимо на эту же поверхность уложить два контура. Например:
Если имеется препятствие, то следует обойти таким методом:
Важно по возможности сделать длины контуров одинаковыми.
Также есть практический совет, возле наружных стен делать шаг укладки меньше в 1,5 раза, если общий шаг укладки не равен 10мм. Так как пол у наружных стен быстрее расходует тепло.
Пример:
Что касается объема площади?
По своему опыту скажу, что площадь может быть и 6х6 метров. А может и10х5 метров. Во многих местах и в справочниках пишут, что площадь теплого водяного пола не должна превышать 40м2.
Но я так скажу! Если длинна пола превышает 10 метров, то следует разделить такой пол на части. Так как нагреваемый пол при повышении температуры начинает удлиняться.
На места разделения полов укладывают демпферную ленту. Лучше чтобы целый контур был в пределах части теплого пола. То есть, чтобы сам контур не пересекал демпферную ленту.
Если у Вас большая площадь и необходимо ее разделить, то следует сделать так, чтобы на каждую часть был отдельный контур. Контур — это уложенная одной веткой. То есть это фактически одна труба, по которой бежит один поток. То есть демпферная лента должна разделять потоки. Через демпферную ленту не должно проходить много труб. Где демпферная лента — там идет постоянное изменение расстояния между теплыми полами. И нахождение там может им навредить.
В местах прихода труб в саму обогреваемую плиту, необходимо уложить в какую либо изоляцию. Это может быть теплоизолирующий энергофлекс, или гофрированная труба. Чтобы в этом месте происходило сглаживание движение плиты от .
Основание теплого пола?
Сейчас расскажу разницу между идеальным теплым полом и так себе:
Вариант так себе:
Основание пола не ровное и имеет погрешность до 5 см. То есть где то нормально, а где то и на 5 см ниже, а то и на 10см. Утеплитель имеет толщину от 2 до 5 мм. Толщина бетонной стяжки от 5 до 15 см.
Вариант так себе относится к низко качественной работе теплого пола. Раньше многие так делали. Пол скажем греет не равномерно и плохо. Тепло уходит в плиту, тем более через тонкий утеплитель. Такой утеплитель допускается в квартирах, да и то такой утеплитель не экономично действует на пол. Тепло уходит в нижний несущий пол!
Идеальный теплый пол!
Основание пола ровное и имеет погрешность до 3 см. Утеплитель от 25 мм, это обычно пенопласт или пенополистирол (С плотностью не менее 35кг/м3 для крепости). Толщина бетонной стяжки от 5 до 10 см. В стяжке необходимо уложить металлическую сетку для крепости пола. Также металлическая сетка может играть и сглаживающий эффект передачи тепла по полу. Металлическую сетку нужно уложить под трубой, для усиления можно добавить сетку сверху трубы. По краям пола нужно уложить демпферную ленту, для компенсации расширения пола.
Что касается трубы для теплого пола?
Труба может быть в основном из металлопластика или . Существует большой вопрос, а что лучше металлопластик или сшитый полиэтилен. Многие продавцы и мастера утверждают, что лучше для теплого пола укладывать специальную трубу для теплого пола из .
Я же по своему опыту могу утверждать, что разница очень маленькая и кпд почти не отличается. Так что это сильно раздутый миф про сшитый полиэтилен, к тому же стоит дорого. Могу лишь утверждать, что чем выше внутренний для теплого пола, тем лучше. Так как обогрев лучше и сопротивление потоку ниже. Что улучшает КПД теплого пола. Что касается теплопередаче, то без сомнения у оно выше! Но стоит ли оно свеч? Нет! Во первых разница очень маленькая, а во вторых законы из расчеты теплотехники, вполне допускают теплопередачу. Это то что скорость теплопередаче вполне достаточно для обогрева бетонного пола. Так как сам бетонный пол не переносит тепло так быстро, как хотелось бы. Если бы бетонный пол переносил тепло мгновенно, тогда эффект был бы значительным.
Также можно использовать медную трубы и трубу из нержавеющей гофрированной стали. Но эти трубы очень дорогие и монтаж таких очень трудоемкий. Так что эти трубы отпадают однозначно!
Уложение теплого пола имеет такую последовательность:
1. На горизонтальный пол с погрешностью 3 см укладывается утеплитель (Пенополистирольная плита) толщиной от 2,5 до 10 см. 2. На пенополистирольную плиту ложиться полиэтиленовая пленка или фольгированный пенофол толщиной 5-10мм. 3. Далее ложится сетка с шагом от 5-150 мм. Толщина проволоки 2-4мм. 4. Далее укладывается труба с определенным шагом. 5. Возле стен и на границе уложить демпферную ленту.
Пояснение к каждому элементу пирога теплого пола:
1. Пенополистирольная плита служит для того, чтобы предотвратить в низ в бетонную плиту или в нижнее помещение. Пенополистирольная плита должна быть с параметрами не менее 35 кг/м3 для предотвращения разрушений при нагрузке сверху. Обычно для первого этажа имеющий не отапливаемое нижнее помещение (подвал и прочее) монтируется пенополистирольная плита толщиной не менее 100мм. Для последующих этажей 50мм. Иногда допускается укладка толщиной до 50мм. Для допустимого обогрева пола толщина пенополистирольной плиты не должна быть ниже 30мм. Пенополистирольная плита ложиться на ровную поверхность пола без зазоров, если имеются неровности в полу, то такие перепады засыпают отсевом и выравнивают его по всему полу и потом на отсев ложиться пенополистирольная плита.
2. Вторым слоем на пенополистирольную плиту ложиться либо фольгированный пенофол либо полиэтиленовая пленка. Поскольку фольгированный пенофол это вспененный полиэтилен покрытый фольгой — имеет, как и полиэтиленовая пленка, гидроизоляционный эффект. Этот эффект предотвращает паропроницаемость между бетонным полом и пенополистирольной плитой. Если влага не переходит из одной среду в другую, то улучшается климат по теплоизоляционным свойствам. Этот эффект гидроизоляции уменьшает теплопотери в низ, тем самым экономиться тепловая энергия. А фольгированный слой дополнительно увеличивает изоляцию по паропроницаемости, как известно, что различные металлы имеют большое сопротивление по проницаемости различных веществ. Также не мало важным эффектом фольги обладает его возможность отражать тепловые лучи, что тоже добовляет эффект уменьшения вниз. Также полиэтиленовая пленка и фольга уменьшают проникновение вредных веществ от пенополистиролной плиты, так как известно, что пенополистирол это вредное вещество. Как не крути, но в малых количествах придется дышать парами пенополистирола. Еще одним нюансом будет — это то, что открытая фольга в пенофоле при заливке бетонной стяжке может быстро разрушиться химическими реакциями раствора. Грубо говоря раствор съедает фольгу, если она очень тонкая. Узнавайте у продавцов о фальгированном пенофоле специальным для теплого пола мокрым способом (то есть бетонного теплого пола). Фольгированный пенофол для теплого пола может быть защищен, от разъедания фольги либо быть достаточно с толстым слоем фольги.
3. Стальная сетка с определенным шагом служит для того чтобы укрепить основание бетонной стяжки теплого пола. Находящаяся в нижнем слое сетка при деформации бетонной стяжки идет на растяжение, и тем самым увеличивает крепость бетонной стяжки на излом. К тому же сетка дает возможность закрепить на ней трубу. Крепиться к сетке через пластиковые хомуты, которая продается в электромагазинах. Сама сетка крепиться дюбель-гвоздями определенной длины в сквозь пенеополистирольную плиту к плите перекрытия. Сетка к дюбель-гвоздям соединяется через металлическую монтажную ленту.
4. Демпферная лента служит для предотварщения разрушений бетонной стяжки от теплового расширения самой бетонной стяжки.
Заливается качественной бетонной стяжкой (Цемент + отсев. Крупный камень не ложите.). Чтобы стяжка не потрескалась, необходимо первую неделю поливать ее утром и вечером холодной водой или что лучше купите специальный для этих целей «пластификатор», который разбавляется с бетонным раствором и препятствует растрескиванию. На худой конец проконсультируйтесь у специалистов как делать ровную стяжку, чтобы она не потрескалась. Продаются специальные присадки или добавки. Толщина стяжки не более 5-7см. расстояние от трубы от 1-3см при условии, что сверху еще будет керамическая плитка. Если не будет плитки, то от трубы оставьте 3-4см. При высыхании бетонной стяжки не следует пускать по трубам горячую воду. Лучше просто оставьте под давлением в 1,5-4 атмосферы. То что пишут надо держать до 6 атмосфер и прочее, тоже раздутый миф. Все работает и не портится. А давление Вы оставьте для того чтобы обнаружить брак и обнаружить протечки во время повреждения трубы. И все…
Не переживайте на счет стяжки! Стяжка пойдет любая. И не слушайте всякие фирмы которые пиарят свои технологии. Якобы у них пол хорошо передает тепло и прочее. Это опять раздутый миф. Разница опять же очень маленькая. Из-за каких то маленьких процентов, такой пиар раздувают «мама не горюй!»… Главное чем меньше толщина стяжки бетонного пола тем лучше передается тепло. Так как бетон сам по себе играет хоть и маленькую но теплоизоляцию. То есть сопротивляется теплопередаче. Паркет на теплый пол не ложите. Паркет тоже своего рода теплоизолятор, но уже по сильнее бетона и керамической плитки. На теплый пол однозначно ложите керамическую плитку. Допускается ложить паркет только в теплых краях. У нас же с 30 градусными морозами так нельзя. Вы конечно можете положить паркет или дерево. Но Вы сильно теряете исходящее тепло от пола. Поэтому следует добавить мощности обогрева на другие отопительные приборы(радиаторы).
Какой длины трубопровод должен быть в контуре теплого пола?
Все зависит от конкретного случая. Ниже я Вам покажу таблицу где указано сопротивление движению воды в трубах. И Вы должны понять какую длину подобрать!
Для тех кто боится считать — опыт из практики:
Для 16 трубы металлопластика до 80 метров.
Для 20 до 100 метров.
Если смотреть с точки зрения экономии, то чем короче труба тем экономичнее получается система теплого пола, и не важно, что много контуров получается.
Если разумно, то для 16 трубы это 65 метров.
Для 20 75 метров.
Так как насос потребляет энергию, то целесообразно тратить энергию меньше. Из гидравлики следует, что чем медленнее бежит вода в трубе тем легче она бежит. Чем длиннее труба тем сильнее сопротивляется движению поток. Так что существует такой предел, что насос не может дать такой напор превышающий сопротивление движению. В следствии этого расход в трубе маленький на столько, что становится не достаточным для обогрева теплого пола.
Для хорошего обогрева пола в 10 м2, необходим расход не менее 2литра/минуту.
Соответственно 20м2 необходимо не менее 4 литров/минуту. Для 20м2 Необходимо уже 2 и более контуров. Если это два контура, то на каждый контур 2литра/минуту и того 4 литра минуту на пол из двух контуров.
Если Вы уложите слишком длинную трубу, то Вы получите не совсем экономичную систему. Во первых сопротивление движению будет большим и Вам для разумного расхода придется использовать более мощные насосы и соответственно терять дополнительную энергию. Если расход будет не достаточным, то Вы не получите необходимого тепла на теплый пол. Он попросту будет слабо греть. Так как по трубе, будет проходить мало теплой жидкости.
Ниже будет конкретный алгоритм вычисления длины трубопровода, но после того как Вы познакомитесь со схемами, которые предназначены для теплых полов.
Далее график для металлопластиковой (Для трубы из сшитого полиэтилена тоже подходит):
Этот график взят из надежных источников, разработан мировым лидером в области и отопления. Данные указаны длиной в один метр. Сам проверил со своими формулами. Скажу, что 1 метр напора = 10 000 Па. А для вашей задачи: Результат потерь напора умножаете на количество метров и получает общую потерю напора на трубу.
Личные расчеты:
Таблица 1
Виды смесительных узлов для теплых водяных полов?
Смесительный узел играет очень важную роль в системе водяных теплых полов. Смешивает основной поток с потоком для контуров теплого пола. Чтобы получить дополнительный расход на контура теплого пола.
Хотите узнать, как сделать теплый пол без смесительного узла?
Такой теплый водяной пол можно сделать, только через , и без насоса! О том, как сделать теплый пол без дополнительного насоса с помощью трехходового клапана, можно узнать здесь: .
Схема узла для теплого пола может быть нескольких вариантов. Рассмотрим самый простой наглядный вариант, где нет особых заморочек.
Схема подключения теплого пола.
Давайте теперь рассмотрим теплого пола более детально:
Смотри схему.
Пропускной клапан служит для того, чтобы пропускать или не пропускать тепло от котла в систему теплого пола. Обычно туда ставится термостатический клапан с термоголовкой. У термоголовки должен быть прикладной датчик. Этот датчик прикладывается на подающий трубопровод в контура теплых полов.
У этого вида байпас должен повторять основной диаметр прохода теплоносителя.
Недостаток данной системы, в том что при остановке контуров, насосу будет нечего качать. Но эта проблема решается добавлением второго байпаса между подающим и обратным коллектором.
Схема 1: Последовательный тип смешивания.
Кстати за место пропускного клапана можно установить или обычный шаровый кран, но этот вид требует постоянного контроля. Поэтому не рекомендуется.
Единственное и пока на сегодняшний день бесполезное достоинство данной схемы является то, что выходящий поток из смесительного узла в сторону котла, более пониженный, и равен температуре пола. Такой подход с точки зрения теплотехники более правильный и более производительный.
Схема 2. Параллельный тип смешивания.
В любых схемах за место байпаса можно поставить . Он служит для того, чтобы в определенном напоре начать через себя пропускать поток. Это дает возможность постоянно не гонять воду через байпас, когда контура задействованы. Когда контура все закрыты, то начинает пропускать через себя жидкость, чтобы насос не работал в нагрузку, тем самым экономил электроэнергию. А собственно, в каких случаях контура должны закрываться? Дело в том, что в продвинутых домах стоит климат контроль, который по мере нагревания может перекрывать контура. А когда возникнет ситуация, при котором все контура закроются, тут то и приходит на помощь байпас с перепускным клапаном. Он помогает насосу давать расход. Если насос не качает в нагрузку, он и потребляет меньше энергии. Перепускной клапан имеет механическую настройку необходимого напора, при котором он начинает пропускать жидкость. Вообще существуют и электрические операции, при котором насос просто выключается. Но об этом сложном явлении как-нибудь в другой раз.
Недостаток данной системы это то, что выходящий поток из смесительного узла равен температуре теплоносителя входящего в теплый пол. Температура которая входит в контур теплого пола равна температуре выходящего из в сторону котла.
Схема3. Параллельный тип смешивания.
Схема 3 многим напоминает схему 2, и практически по функционал мало чем отличается. Единственное отличие может возникнуть в простоте сборке.
Пропускной (термостатический) клапан, необязательно должен быть с хорошей проходимостью или большого диаметра, так как показывает практика, то проходимость, может сильно отличатся и это не портит смесительный узел. Так как насос бывает сильно влияет на расход через пропускной (термостатический) клапан. Своей затягивающей силой он очень сильно увеличивает расход воды через пропускной (термостатический) клапан. К тому же примерно расход через клапан в два раза ниже расхода насоса.
Чтобы в данной схеме соблюсти хорошую проходимость необходимо иметь хорошую проходимость через циркуляционный насос. То есть само кольцо от обратного коллектора через насос до подающего коллектора имело хороший идеальный проход без заужений. В эту схему нельзя устанавливать с термочувствительным элементом. Так как трехходовые клапаны имеют маленькую проходимость в следствии этого большие .
Подробнее о .
следует ставить так(См. Схема 4):
Схема 4. Последовательный тип смешивания.
Сам по себе предназначен пропускать воду от одной ветки в остальные две ветки в зависимости от поворота клапана. То есть в данную схему нужно ставить не такой клапан, который открывает или закрывает одну линию. А плавно открывая одну линию и закрывая другую. Линия, где находится насос — она всегда открыта. При охлаждении датчика клапана открывается линия входящего тепла от котла и закрывается линия байпаса. При нагревании происходит обратная процедура. Только такой выше описанный клапан монтируется в данную схему 4.
Я уже говорил, что сами эти с термостатом имеют плохую проходимость, и использовать их вообще не рекомендую. Только для малой производительности. В пределах 3 — 4 контуров теплого пола. Но существуют схемы, которые позволяют поставить любой трехходовой клапан. Подробнее о схемах ниже.
Ну если у Вас уже имеется трехходовы клапан с выносным датчиком, то для хорошей прокачки можно его поставить как указано на схеме 5. Но это не идеальная схема. Существуют и другие схемы.
Схема 5. Параллельный тип смешивания.
Если трехходовой без выносного датчика, то по схеме 4. Так как при схеме 5 на вход датчика не приходит остывшая вода из контуров. И он будет при поступлении горячей воды сразу закрываться.
А теперь подробней о схемах.
Выше описанные схемы мы рассмотрели как некий вариант для вашего воображения. Чтобы вы могли понять, какие варианты сборки существуют для смесительных узлов.
Ниже будут схему куда лучше…
На сегодняшний день обнаружил одну важную особенность, что самое разнообразное количество схем разделяются на два типа смешивания воды (теплоносителя).
Это: Параллельный тип смешивания и последовательный тип смешивания .
Чтобы это понять, давайте рассмотрим наглядную схему.
Стрелками обозначены потоки воды. Пол — это контур теплых полов.
Как Вы думаете, какая схема более производительная? Конечно последовательная! В последовательной схеме, весь расход насоса идет в контура теплых полов. А в параллельной схеме, расход насоса делится с расходом притока входной циркуляции. Поэтому если Вы хотите выжать максимум полезного действия из насоса на контура теплых полов, то однозначно, нужна последовательная система смесительного узла. И это не обсуждается.
Также при последовательной схеме можно уложить на много больше контуров в одном смесительном узле. Так как расход на полы можно получить на много больше. В то время как на параллельном типе расход насоса делиться с другим кольцом циркуляции.
Чтобы Вы поняли, какие схемы относятся к последовательным, и параллельным типам, рассмотрим схемы.
Параллельные схемы смесительных узлов:
Последовательные схемы смесительных узлов:
Последовательная система лучше тем, что весь расход насоса уходит в контура теплых полов. Этот поток не делится. Тем самым дает возможность сделать в одном смесительном узле большое количество контуров.
Хотите узнать, как сделать теплый пол без смесительного узла?
Такой теплый водяной пол можно сделать, только через , и без насоса! О том, как сделать теплый пол без дополнительного насоса с помощью трехходового клапана, можно узнать здесь: .
Не забывайте! В схеме не обозначены автоматические спускники воздуха. Я надеюсь, что это не составит труда понять куда ставить их. Ставьте на высокую точку подающего и обратного коллектора. Имейте ввиду и подумайте, чтобы ротор насоса не крутился в воздухе.
Мы не рассмотрели вариант, когда имеется один контур для теплого пола. В принципе и такой вполне возможен для одного контура. Только диаметр труб можете уменьшить, да и мощность и расход насоса можно уменьшить в три раза. Подробнее ниже.
О том, какие схемы применить к трехходовым клапанам Вы можете узнать .
Какой насос применить для теплого водяного пола?
На рынке продаются стандартные циркуляционные насосы для с расходом 2,5 м3/час, это около 40 литров/минуту и напором до 6 метров. Чем выше , тем быстрее будет расход в контуре теплого пола. Для теплого пола существует обычный стандарт насоса с параметрами(2,5м3/ч с напором 6м.).
Если на насосе указано, что расход у него 40 литров в минуту, то на деле это не означает, что он будет так качать. Все зависит от пропускной способности самой систему или узла теплого пола. Допустим если у Вас много длинных контуров, то они дают достаточное сопротивление движению, вследствие этого расход насоса уменьшается.
Примерный график всех насосов:
А теперь реальный график такого насоса(2,5м3/ч с напором 6м.):
График 1.
А теперь соображайте, чем лучше пропускаемость, тем меньше напор появляется на контурах. Чем больше веток(контуров) в одном смесительном узле, тем выше расход и само собой разумеется, тем меньше напор на всех контурах. Так что нужно не перегнуть палку! Если для хорошей прокачки контура необходим напор в 3 метра, то необходимо по графику соблюсти расход и не увеличивать количество контуров.
Как узнать весь расход в смесительном узле для параллельной схемы?
1. Посчитать в каждой ветке рекомендуемый расход. Все расходы веток сложить.
2. Посчитать какое количество потерь будут производить все ветки(контура). А на самом деле — количество потерь сможет нам найти постоянный расход приходимого тепла в смесительный узел. Он обычно равен около 40-100% от всех расходов контуров. То есть если вся сумма расхода контуров равна 15 литрам/минуту, то расход приходящего тепла равен примерно 6-15 литрам/минуту. Это зависти от разницы температур от входящего и установленного термоголовкой температуры. Также влияют на расход и теплопотери самого пола. То есть если температура от котла идет 60 градусов, а в смесительном узле установлено 40 градусов, то расход будет примерно 40%. А если температура от котла идет 75 градусов, а в смесительном узле установлено 40 градусов, то расход будет примерно 25%. Также нужно учесть и байпас, если он имеется, то через него тоже идет постоянный расход. Еще прибавьте около 6 литров/минуту на байпас. Если длинные, то соответственно и большие, и соответственно термоголовка начинает пропускать больше тепла, а это значит, что увеличивается расход насоса, и соответственно напор падает.
А если совсем трудно понять, то считайте так:
1. Посчитать в каждой ветке рекомендуемый расход. Все расходы веток сложить.
2. Все расходы веток умножьте на 2. То есть если расход всех контуров равен 15, то общий расход самого насоса должен составить 30 литров/минуту.
Как узнать весь расход в смесительном узле для последовательной схемы?
1. Посчитать в каждой ветке рекомендуемый расход. Все расходы веток сложить. Так как при последовательной системе расход насоса идет полностью на контура теплых полов, то достаточно сложить только расход всех контуров.
Полученный расход сверяйте с графиком и находите выдаваемой графиком потерю напора. На горизонтальной координате имеется шкала расхода, от нужной шкалы поднимаетесь вверх упираетесь на линию и далее горизонтально движетесь влево и получаете шкалу напора. График для других насосов оригинальный. Просто сами вручную можете нарисовать шкалу вашего насоса и нарисовать в нем дугу как показано на графике 1. Так как все насосы работают по стандартной кривой. И в зависимости от напора можно выбрать по таблице 1 необходимую длину трубопровода.
Учтите еще одну особенность! ! Это то, что если насос с напором 6 метров, на деле как обычно выдает меньше напора, например 5 метров. Если расход 40 литров/минуту, то может выдавать 30 литров/минуту. Это происходит в силу разных факторов: Потеря напряжения в сети. Местные сопротивления самих узлов трайников. Кое-какие заужения в трубах, повороты и прочее. И в итоге нужно считать примерно на 15% ниже ресурс насосов. Только тогда Вы сделаете правильно.
Вот такой график практического опыта для насоса с параметрами(2,5м3/ч с напором 6м.):
График 2.
Как узнать какую длину трубы необходимо для теплого пола.
Чтобы это посчитать необходимо знать расход воды в трубе при заданной длине трубопровода на определенную площадь пола. Также на 10м2 должен быть расход не ниже 2 литров/минуту. Зависит от теплопотерь. Ниже будут подробности.
По таблице 1 найти потерю напора. И чтобы напор на входе в контур не был ниже по трубе при определенной скорости течения жидкости.
А напор в одном смесительном узле одинаковый для всех контуров. Насос создает один напор на все контура. Напор вычисляем по графику2.
Не запутайтесь! Это комплексное решение. Ниже прочитайте про шаг укладки и тогда должно быть понятно про длину трубопровода. Главное не сделать слишком длинную трубу.
А если по простому, то на каждые 10 метров 16 трубы необходимо качать минимум 0,4 литра/минуту. То есть на 50 метров трубы необходимо 2 литра/минуту. А на 80 метров 3,2 литра/минуту.
Комплексное решение таково:
Напор насоса(см. гафик2) не должен быть ниже потери напора по длине трубопровода при определенном расходе одного контура. Потерю напора в трубопроводе одного контура находите по таблице1. Напор насоса находится по графику2 при определенном расходе всего смесительного узла.
Таблица 1
Имейте ввиду, что если Вы к себе установите , на без того забитую систему отоплению, то возможно этим смесительным узлом вы отберете у котла некоторый расход, что может повлиять на расход в других ветках отопления. Эта проблема решается добавлением , с дополнительными насосами.
Что касается потерь на загибах трубы, то они очень маленькие, например, чтобы получить сопротивление в 1 метр при скорости 0,44 метров/секунду необходимо 200 поворотов(90градусов). Как правило на одном контуре их может быть максимум 40.
Очень важно знать, что если Вы используете незамерзающую жидкость в системе отопления, то незамерзающая жидкость по вязкости отличается от воды от 30% до 50%. А это означает, что вода по трубам будет бежать еще медленнее. И расчеты нужно вести уже другие. Необходимо добавить запас мощности насоса примерно на 20% или укоротить трубы на 20%. Также имейте ввиду, что теплоемкость незамерзающей жидкости опять меньше примерно на 20%. Это значит эта жидкость будет меньше переносить тепла.
Какое количество контуров теплого пола скомплектовать в одном смесительном узле?
Если опираться на золотой опыт:
По опыту скажу насос с расходом до 40литров/минуту и напором 6 метров для параллельной системы, достаточно до 8 контуров длинной не превышающий 65 метров для 16 трубы.
Для последовательной системы, достаточно до 12 контуров длинной трубы не превышающий 65 метров для 16 .
Если Вы решили сделать трубы длинной 80 метров, то следует сделать 5 контуров для параллельной системы, 8 контуров для последовательной системы, на один такой насос.
Только не вздумайте контур делать длинной 100 метров 16 трубы, очень не экономично! На своем личном опыте проверено!
Да и вообще не рекомендую даже 20 трубу делать 100 метров! Лучше сделайте два контура по 50 метров из 16 .
Рекомендую не превышать длину трубы более 80 метров. Даже для 20 трубы. Трубы используйте только 16. Они гнутся хорошо. И шаг укладки становится доступным для сильного изгиба.
А если Вы решили посчитать более конкретно.
Алгоритм решения данной задачи для параллельной системы.
Допустим, у Вас получилось 6 контуров теплого пола. С длиной, Вы тоже определились и оно около 80 метров. С расходом Вы тоже определились и оно равно 3 литра/минуту на каждую ветку.
А теперь считаем:
Смотрим таблицу 1.
80 метров с расходом 3 литра/минуту дает потерю напора 2,16 метров.
Считаем весь расход: Количество контуров с расходом 3 литра/минуту дают общий расход 18 литров/минуту. Этот расход умножаем на 1.5 раза и получаем 27 литров в минуту. Сверяемся с графиком 2 (см. выше). По графику видно, что напор получается около 1.3 метра. Смотри таблицу 1 и видим, что расход на ветке в 80 метров будет находится в пределах 2 литров/минуту.
Чтобы достичь в каждой ветке расхода в 3 литра/минуту, нужно либо увеличить мощность циркуляционного насоса, что не экономично. Либо разделить 6 веток пополам и на каждые 3 ветки поставить один смесительный узел. Что тоже не экономично. Остается следующий вариант. Укоротить трубы в контурах и увеличить количество веток. Такой вариант более экономичный. С точки зрения затрат на перекачку воды по веткам.
У нас 18 литров/минуту необходимо! Мы можем 18 поделить на 8 веток и получить расход 2.25 литров/минуту на каждую ветку. Длинна ветки уже будет около 65 метров. Но длины каждой ветки могут быть разные. Тогда необходимо высчитать, где какой расход необходим. Но об этом чуть позже. Так как вы еще не знаете, как определить шаг укладки.
Алгоритм решения данной задачи для последовательной системы.
Допустим, у Вас получилось 6 контуров теплого пола. С длиной, Вы тоже определились и оно около 80 метров. С расходом Вы тоже определились и оно равно 3 литра/минуту на каждую ветку.
А теперь считаем:
Смотрим таблицу 1.
80 метров трубы с расходом 3 литра/минуту дает потерю напора 2,16 метров.
Считаем весь расход: Количество контуров с расходом 3 литра/минуту дают общий расход 18 литров/минуту. Сверяемся с графиком 2 (см. выше). По графику видно, что напор получается около 2.5 метра. Смотри таблицу 1 и видим, что расход на ветке в 80 метров будет находится, в пределах 3 литров/минуту. Итог: Подходит!
Как определить шаг укладки теплого пола?
Чтобы определить шаг укладки необходимо знать самой комнаты. И какого качества тепла Вы хотите получить. Но мы не будем вычислять , так как этого можно не делать. Достаточно золотого опыта.
Из золотого опыта, для сурового климата России в пределах -30 градусов для нормально утепленного дома:
Если Вы хотите получать напольное без других источников обогрева, то шаг укладки должен быть не менее 10-12 см. Если в сочетании с батареями(радиаторами), то 15-20см. Делать шаг укладки больше не рекомендую, так как ощущается разница обогрева по площади пола.
Что касается длинны , то это зависит от необходимого расхода воды по трубе и достаточного напора, для ее прокачки.
Что касается расхода:
При шаге укладки в 10-12см на 10м2 необходимо качать 2-3 литров/минуту.
При шаге укладки в 15-20см на 10м2 необходимо качать 1-2 литров/минуту.
А если по точнее, то на каждые 10 метров 16 трубы необходимо качать 0,4 литра/минуту. То есть на 50 метров трубы необходимо 2 литра/минуту. А на 80 метров 3,2 литра/минуту. Чем длиннее труба тем больше теплопотерь в контуре.
То есть чем короче труба, тем меньше можно качать воды по трубам. Пропорционально теплопотерям. Но чем выше расход в трубах, тем кпд пола больше.
Кстати если у Вас в смесительном узле более 3 контуров, то обязательно нужно брать коллектора с расходомерами. Данные коллектора показывают расход в каждом контуре. И если контура по своей длине сильно отличаются и шаг укладки в том числе, то будет возможность отрегулировать каждый контур по количеству расхода. Так как там есть вращающий элемент, который приводит клапан для необходимого пропуска воды.
На рынке продаются зарекомендовавшие себя :
combimix
Скачать программу CombiMix 1.0
dualmix
Видеоурок по расчету смесительного узла
Если Вы любитель конкретно посчитать физику и математику явлений, то будет для Вас интересно познакомится с лично разработанными статьями .
Если, что-то непонятно пишите в комментарии, так как я являюсь и администратором и модератором данного сайта, также я являюсь и автором данной статьи. Мне приходят уведомления о добавленных комментариях, и я их читаю.
Просто щелкайте по тексту «комментарии» Далее по тексту «Добавить комментарий».
Если Вы желаете получать уведомления о новых полезных статьях из раздела: Сантехника, водоснабжение, отопление, то оставте Ваше Имя и Email.
—
Источник: http://infobos.ru/str/598.html
Водяные теплые полы без насоса своими руками фото
Читать топ новости:
new-iskushenie.ru
Теплые полы водяные своими руками без насоса
Лучшие новости сайта
Все о разработке водяного теплого пола своими руками.
В этом разделе я вам расскажу, как сделать теплый пол своими руками. Рассмотрим устройство теплых полов. С учетом моей многолетней практики, я расскажу как с экономить на материалах и как правильно сделать схему теплого пола. Вам не придется покупать дорогостоящее оборудование, в виде мини схем по смесительным узлам. Зная схемы и устройства работы теплого пола Вы на лету сможете сконструировать любую схему и решить задачу по теплому полу.
Эта статья является полным обучающим курсом по проектированию теплых водяных полов. Зная физику явлений, Вы поймете принцип обустройства теплых полов. Данная информация поможет избежать дорогостоящих проблем с вашим обустройством теплого пола.
И это бесплатно!!! Эту статью разработал специалист с многолетним стажем работы и опытом монтажа теплого пола.
Также данная статья будет являться постоянным справочником для тех, кто занимается и .
В данной статье будут наглядные примеры и соединительные узлы теплых полов. Так же Мы по решаем типовые задачи.
Расскажу на простом понятном языке для чайников, как сделать монтаж теплого пола!
В этом разделе вы узнаете:
Какой шаг укладки применить? Какой длины должен быть в контуре теплого пола? Как упаковать теплый пол в полу? Какое количество контуров теплого пола скомплектовать в одном смесительном узле? Виды для теплых водяных полов? Какой насос применить для теплого водяного пола? Какие расчеты ведет инженер конструктор при создании схем теплых водяных полов? Как и во что уложить и какое основание сделать для теплого пола. Как залить теплый пол бетонной стяжкой.
В этом разделе я поясню все нюансы, которые встречаются на практики обычного монтажника.
Чтобы раньше времени Вы не устали! Мы будем идти от простого к сложному. В данной статье мы больше рассмотрим практический опыт. Посмотрим график зависимости. Маленько посчитаем. А кто захочет считать очень точно, то можете посетить и познакомиться с моим лично-разработанным разделом Гидравлики и теплотехники . В этом разделе больше физики и математики. В общем кто хочет считать всю физику процессов водоснабжения и отопления, то без Вам не обойтись.
Что касается температуры самой плиты теплого пола, то она не должна превышать 30 градусов. Вообще этого бывает достаточно. Если в смесительном узле имеется термостатический клапан с термоголовкой, то установка необходимой температуры настраивается поворотом термоголовки. Обычно до 60 градусов. Имейте ввиду что температура воды в теплом поле от реальной температуры плиты теплого пола может отличаться на 10 — 20 градусов.
Самое простое в этой задаче — это способ укладки трубы на поверхность будущего теплого пола.
Но и здесь новички-монтажники умудряются сделать не правильно!
И так, что касается укладки теплого пола, то рекомендую способ улитки, этот способ улитки самый экономичный с точки зрения гидравлических потерь. Так как при таком способе, жидкость в трубе протекает с меньшим количеством поворотов, что увеличивает хорошее протекание жидкости в трубах. Также пол по всей площади греет равномерно.
Например:
Чтобы правильно начертить-разметить комнату необходимо, чтобы число продольных полос было четно. То есть 8,10,12,14,16 и так далее.
Например здесь 16 продольных и 18 поперечных полос (Поперечные не влияют на положение ниток.).
Данная поверхность пола не прямоугольная и имеет фаску. В таких случаях размечаем параллельные фаске линии с таким же шагом, что и клетка.
И вот что получилось:
Если длинна труб превышает допустимое значение, то необходимо на эту же поверхность уложить два контура. Например:
Если имеется препятствие, то следует обойти таким методом:
Важно по возможности сделать длины контуров одинаковыми.
Также есть практический совет, возле наружных стен делать шаг укладки меньше в 1,5 раза, если общий шаг укладки не равен 10мм. Так как пол у наружных стен быстрее расходует тепло.
Пример:
Что касается объема площади?
По своему опыту скажу, что площадь может быть и 6х6 метров. А может и10х5 метров. Во многих местах и в справочниках пишут, что площадь теплого водяного пола не должна превышать 40м2.
Но я так скажу! Если длинна пола превышает 10 метров, то следует разделить такой пол на части. Так как нагреваемый пол при повышении температуры начинает удлиняться.
На места разделения полов укладывают демпферную ленту. Лучше чтобы целый контур был в пределах части теплого пола. То есть, чтобы сам контур не пересекал демпферную ленту.
Если у Вас большая площадь и необходимо ее разделить, то следует сделать так, чтобы на каждую часть был отдельный контур. Контур — это уложенная одной веткой. То есть это фактически одна труба, по которой бежит один поток. То есть демпферная лента должна разделять потоки. Через демпферную ленту не должно проходить много труб. Где демпферная лента — там идет постоянное изменение расстояния между теплыми полами. И нахождение там может им навредить.
В местах прихода труб в саму обогреваемую плиту, необходимо уложить в какую либо изоляцию. Это может быть теплоизолирующий энергофлекс, или гофрированная труба. Чтобы в этом месте происходило сглаживание движение плиты от .
Основание теплого пола?
Сейчас расскажу разницу между идеальным теплым полом и так себе:
Вариант так себе:
Основание пола не ровное и имеет погрешность до 5 см. То есть где то нормально, а где то и на 5 см ниже, а то и на 10см. Утеплитель имеет толщину от 2 до 5 мм. Толщина бетонной стяжки от 5 до 15 см.
Вариант так себе относится к низко качественной работе теплого пола. Раньше многие так делали. Пол скажем греет не равномерно и плохо. Тепло уходит в плиту, тем более через тонкий утеплитель. Такой утеплитель допускается в квартирах, да и то такой утеплитель не экономично действует на пол. Тепло уходит в нижний несущий пол!
Идеальный теплый пол!
Основание пола ровное и имеет погрешность до 3 см. Утеплитель от 25 мм, это обычно пенопласт или пенополистирол (С плотностью не менее 35кг/м3 для крепости). Толщина бетонной стяжки от 5 до 10 см. В стяжке необходимо уложить металлическую сетку для крепости пола. Также металлическая сетка может играть и сглаживающий эффект передачи тепла по полу. Металлическую сетку нужно уложить под трубой, для усиления можно добавить сетку сверху трубы. По краям пола нужно уложить демпферную ленту, для компенсации расширения пола.
Что касается трубы для теплого пола?
Труба может быть в основном из металлопластика или . Существует большой вопрос, а что лучше металлопластик или сшитый полиэтилен. Многие продавцы и мастера утверждают, что лучше для теплого пола укладывать специальную трубу для теплого пола из .
Я же по своему опыту могу утверждать, что разница очень маленькая и кпд почти не отличается. Так что это сильно раздутый миф про сшитый полиэтилен, к тому же стоит дорого. Могу лишь утверждать, что чем выше внутренний для теплого пола, тем лучше. Так как обогрев лучше и сопротивление потоку ниже. Что улучшает КПД теплого пола. Что касается теплопередаче, то без сомнения у оно выше! Но стоит ли оно свеч? Нет! Во первых разница очень маленькая, а во вторых законы из расчеты теплотехники, вполне допускают теплопередачу. Это то что скорость теплопередаче вполне достаточно для обогрева бетонного пола. Так как сам бетонный пол не переносит тепло так быстро, как хотелось бы. Если бы бетонный пол переносил тепло мгновенно, тогда эффект был бы значительным.
Также можно использовать медную трубы и трубу из нержавеющей гофрированной стали. Но эти трубы очень дорогие и монтаж таких очень трудоемкий. Так что эти трубы отпадают однозначно!
Уложение теплого пола имеет такую последовательность:
1. На горизонтальный пол с погрешностью 3 см укладывается утеплитель (Пенополистирольная плита) толщиной от 2,5 до 10 см. 2. На пенополистирольную плиту ложиться полиэтиленовая пленка или фольгированный пенофол толщиной 5-10мм. 3. Далее ложится сетка с шагом от 5-150 мм. Толщина проволоки 2-4мм. 4. Далее укладывается труба с определенным шагом. 5. Возле стен и на границе уложить демпферную ленту.
Пояснение к каждому элементу пирога теплого пола:
1. Пенополистирольная плита служит для того, чтобы предотвратить в низ в бетонную плиту или в нижнее помещение. Пенополистирольная плита должна быть с параметрами не менее 35 кг/м3 для предотвращения разрушений при нагрузке сверху. Обычно для первого этажа имеющий не отапливаемое нижнее помещение (подвал и прочее) монтируется пенополистирольная плита толщиной не менее 100мм. Для последующих этажей 50мм. Иногда допускается укладка толщиной до 50мм. Для допустимого обогрева пола толщина пенополистирольной плиты не должна быть ниже 30мм. Пенополистирольная плита ложиться на ровную поверхность пола без зазоров, если имеются неровности в полу, то такие перепады засыпают отсевом и выравнивают его по всему полу и потом на отсев ложиться пенополистирольная плита.
2. Вторым слоем на пенополистирольную плиту ложиться либо фольгированный пенофол либо полиэтиленовая пленка. Поскольку фольгированный пенофол это вспененный полиэтилен покрытый фольгой — имеет, как и полиэтиленовая пленка, гидроизоляционный эффект. Этот эффект предотвращает паропроницаемость между бетонным полом и пенополистирольной плитой. Если влага не переходит из одной среду в другую, то улучшается климат по теплоизоляционным свойствам. Этот эффект гидроизоляции уменьшает теплопотери в низ, тем самым экономиться тепловая энергия. А фольгированный слой дополнительно увеличивает изоляцию по паропроницаемости, как известно, что различные металлы имеют большое сопротивление по проницаемости различных веществ. Также не мало важным эффектом фольги обладает его возможность отражать тепловые лучи, что тоже добовляет эффект уменьшения вниз. Также полиэтиленовая пленка и фольга уменьшают проникновение вредных веществ от пенополистиролной плиты, так как известно, что пенополистирол это вредное вещество. Как не крути, но в малых количествах придется дышать парами пенополистирола. Еще одним нюансом будет — это то, что открытая фольга в пенофоле при заливке бетонной стяжке может быстро разрушиться химическими реакциями раствора. Грубо говоря раствор съедает фольгу, если она очень тонкая. Узнавайте у продавцов о фальгированном пенофоле специальным для теплого пола мокрым способом (то есть бетонного теплого пола). Фольгированный пенофол для теплого пола может быть защищен, от разъедания фольги либо быть достаточно с толстым слоем фольги.
3. Стальная сетка с определенным шагом служит для того чтобы укрепить основание бетонной стяжки теплого пола. Находящаяся в нижнем слое сетка при деформации бетонной стяжки идет на растяжение, и тем самым увеличивает крепость бетонной стяжки на излом. К тому же сетка дает возможность закрепить на ней трубу. Крепиться к сетке через пластиковые хомуты, которая продается в электромагазинах. Сама сетка крепиться дюбель-гвоздями определенной длины в сквозь пенеополистирольную плиту к плите перекрытия. Сетка к дюбель-гвоздям соединяется через металлическую монтажную ленту.
4. Демпферная лента служит для предотварщения разрушений бетонной стяжки от теплового расширения самой бетонной стяжки.
Заливается качественной бетонной стяжкой (Цемент + отсев. Крупный камень не ложите.). Чтобы стяжка не потрескалась, необходимо первую неделю поливать ее утром и вечером холодной водой или что лучше купите специальный для этих целей «пластификатор», который разбавляется с бетонным раствором и препятствует растрескиванию. На худой конец проконсультируйтесь у специалистов как делать ровную стяжку, чтобы она не потрескалась. Продаются специальные присадки или добавки. Толщина стяжки не более 5-7см. расстояние от трубы от 1-3см при условии, что сверху еще будет керамическая плитка. Если не будет плитки, то от трубы оставьте 3-4см. При высыхании бетонной стяжки не следует пускать по трубам горячую воду. Лучше просто оставьте под давлением в 1,5-4 атмосферы. То что пишут надо держать до 6 атмосфер и прочее, тоже раздутый миф. Все работает и не портится. А давление Вы оставьте для того чтобы обнаружить брак и обнаружить протечки во время повреждения трубы. И все…
Не переживайте на счет стяжки! Стяжка пойдет любая. И не слушайте всякие фирмы которые пиарят свои технологии. Якобы у них пол хорошо передает тепло и прочее. Это опять раздутый миф. Разница опять же очень маленькая. Из-за каких то маленьких процентов, такой пиар раздувают «мама не горюй!»… Главное чем меньше толщина стяжки бетонного пола тем лучше передается тепло. Так как бетон сам по себе играет хоть и маленькую но теплоизоляцию. То есть сопротивляется теплопередаче. Паркет на теплый пол не ложите. Паркет тоже своего рода теплоизолятор, но уже по сильнее бетона и керамической плитки. На теплый пол однозначно ложите керамическую плитку. Допускается ложить паркет только в теплых краях. У нас же с 30 градусными морозами так нельзя. Вы конечно можете положить паркет или дерево. Но Вы сильно теряете исходящее тепло от пола. Поэтому следует добавить мощности обогрева на другие отопительные приборы(радиаторы).
Какой длины трубопровод должен быть в контуре теплого пола?
Все зависит от конкретного случая. Ниже я Вам покажу таблицу где указано сопротивление движению воды в трубах. И Вы должны понять какую длину подобрать!
Для тех кто боится считать — опыт из практики:
Для 16 трубы металлопластика до 80 метров.
Для 20 до 100 метров.
Если смотреть с точки зрения экономии, то чем короче труба тем экономичнее получается система теплого пола, и не важно, что много контуров получается.
Если разумно, то для 16 трубы это 65 метров.
Для 20 75 метров.
Так как насос потребляет энергию, то целесообразно тратить энергию меньше. Из гидравлики следует, что чем медленнее бежит вода в трубе тем легче она бежит. Чем длиннее труба тем сильнее сопротивляется движению поток. Так что существует такой предел, что насос не может дать такой напор превышающий сопротивление движению. В следствии этого расход в трубе маленький на столько, что становится не достаточным для обогрева теплого пола.
Для хорошего обогрева пола в 10 м2, необходим расход не менее 2литра/минуту.
Соответственно 20м2 необходимо не менее 4 литров/минуту. Для 20м2 Необходимо уже 2 и более контуров. Если это два контура, то на каждый контур 2литра/минуту и того 4 литра минуту на пол из двух контуров.
Если Вы уложите слишком длинную трубу, то Вы получите не совсем экономичную систему. Во первых сопротивление движению будет большим и Вам для разумного расхода придется использовать более мощные насосы и соответственно терять дополнительную энергию. Если расход будет не достаточным, то Вы не получите необходимого тепла на теплый пол. Он попросту будет слабо греть. Так как по трубе, будет проходить мало теплой жидкости.
Ниже будет конкретный алгоритм вычисления длины трубопровода, но после того как Вы познакомитесь со схемами, которые предназначены для теплых полов.
Далее график для металлопластиковой (Для трубы из сшитого полиэтилена тоже подходит):
Этот график взят из надежных источников, разработан мировым лидером в области и отопления. Данные указаны длиной в один метр. Сам проверил со своими формулами. Скажу, что 1 метр напора = 10 000 Па. А для вашей задачи: Результат потерь напора умножаете на количество метров и получает общую потерю напора на трубу.
Личные расчеты:
Таблица 1
Виды смесительных узлов для теплых водяных полов?
Смесительный узел играет очень важную роль в системе водяных теплых полов. Смешивает основной поток с потоком для контуров теплого пола. Чтобы получить дополнительный расход на контура теплого пола.
Хотите узнать, как сделать теплый пол без смесительного узла?
Такой теплый водяной пол можно сделать, только через , и без насоса! О том, как сделать теплый пол без дополнительного насоса с помощью трехходового клапана, можно узнать здесь: .
Схема узла для теплого пола может быть нескольких вариантов. Рассмотрим самый простой наглядный вариант, где нет особых заморочек.
Схема подключения теплого пола.
Давайте теперь рассмотрим теплого пола более детально:
Смотри схему.
Пропускной клапан служит для того, чтобы пропускать или не пропускать тепло от котла в систему теплого пола. Обычно туда ставится термостатический клапан с термоголовкой. У термоголовки должен быть прикладной датчик. Этот датчик прикладывается на подающий трубопровод в контура теплых полов.
У этого вида байпас должен повторять основной диаметр прохода теплоносителя.
Недостаток данной системы, в том что при остановке контуров, насосу будет нечего качать. Но эта проблема решается добавлением второго байпаса между подающим и обратным коллектором.
Схема 1: Последовательный тип смешивания.
Кстати за место пропускного клапана можно установить или обычный шаровый кран, но этот вид требует постоянного контроля. Поэтому не рекомендуется.
Единственное и пока на сегодняшний день бесполезное достоинство данной схемы является то, что выходящий поток из смесительного узла в сторону котла, более пониженный, и равен температуре пола. Такой подход с точки зрения теплотехники более правильный и более производительный.
Схема 2. Параллельный тип смешивания.
В любых схемах за место байпаса можно поставить . Он служит для того, чтобы в определенном напоре начать через себя пропускать поток. Это дает возможность постоянно не гонять воду через байпас, когда контура задействованы. Когда контура все закрыты, то начинает пропускать через себя жидкость, чтобы насос не работал в нагрузку, тем самым экономил электроэнергию. А собственно, в каких случаях контура должны закрываться? Дело в том, что в продвинутых домах стоит климат контроль, который по мере нагревания может перекрывать контура. А когда возникнет ситуация, при котором все контура закроются, тут то и приходит на помощь байпас с перепускным клапаном. Он помогает насосу давать расход. Если насос не качает в нагрузку, он и потребляет меньше энергии. Перепускной клапан имеет механическую настройку необходимого напора, при котором он начинает пропускать жидкость. Вообще существуют и электрические операции, при котором насос просто выключается. Но об этом сложном явлении как-нибудь в другой раз.
Недостаток данной системы это то, что выходящий поток из смесительного узла равен температуре теплоносителя входящего в теплый пол. Температура которая входит в контур теплого пола равна температуре выходящего из в сторону котла.
Схема3. Параллельный тип смешивания.
Схема 3 многим напоминает схему 2, и практически по функционал мало чем отличается. Единственное отличие может возникнуть в простоте сборке.
Пропускной (термостатический) клапан, необязательно должен быть с хорошей проходимостью или большого диаметра, так как показывает практика, то проходимость, может сильно отличатся и это не портит смесительный узел. Так как насос бывает сильно влияет на расход через пропускной (термостатический) клапан. Своей затягивающей силой он очень сильно увеличивает расход воды через пропускной (термостатический) клапан. К тому же примерно расход через клапан в два раза ниже расхода насоса.
Чтобы в данной схеме соблюсти хорошую проходимость необходимо иметь хорошую проходимость через циркуляционный насос. То есть само кольцо от обратного коллектора через насос до подающего коллектора имело хороший идеальный проход без заужений. В эту схему нельзя устанавливать с термочувствительным элементом. Так как трехходовые клапаны имеют маленькую проходимость в следствии этого большие .
Подробнее о .
следует ставить так(См. Схема 4):
Схема 4. Последовательный тип смешивания.
Сам по себе предназначен пропускать воду от одной ветки в остальные две ветки в зависимости от поворота клапана. То есть в данную схему нужно ставить не такой клапан, который открывает или закрывает одну линию. А плавно открывая одну линию и закрывая другую. Линия, где находится насос — она всегда открыта. При охлаждении датчика клапана открывается линия входящего тепла от котла и закрывается линия байпаса. При нагревании происходит обратная процедура. Только такой выше описанный клапан монтируется в данную схему 4.
Я уже говорил, что сами эти с термостатом имеют плохую проходимость, и использовать их вообще не рекомендую. Только для малой производительности. В пределах 3 — 4 контуров теплого пола. Но существуют схемы, которые позволяют поставить любой трехходовой клапан. Подробнее о схемах ниже.
Ну если у Вас уже имеется трехходовы клапан с выносным датчиком, то для хорошей прокачки можно его поставить как указано на схеме 5. Но это не идеальная схема. Существуют и другие схемы.
Схема 5. Параллельный тип смешивания.
Если трехходовой без выносного датчика, то по схеме 4. Так как при схеме 5 на вход датчика не приходит остывшая вода из контуров. И он будет при поступлении горячей воды сразу закрываться.
А теперь подробней о схемах.
Выше описанные схемы мы рассмотрели как некий вариант для вашего воображения. Чтобы вы могли понять, какие варианты сборки существуют для смесительных узлов.
Ниже будут схему куда лучше…
На сегодняшний день обнаружил одну важную особенность, что самое разнообразное количество схем разделяются на два типа смешивания воды (теплоносителя).
Это: Параллельный тип смешивания и последовательный тип смешивания .
Чтобы это понять, давайте рассмотрим наглядную схему.
Стрелками обозначены потоки воды. Пол — это контур теплых полов.
Как Вы думаете, какая схема более производительная? Конечно последовательная! В последовательной схеме, весь расход насоса идет в контура теплых полов. А в параллельной схеме, расход насоса делится с расходом притока входной циркуляции. Поэтому если Вы хотите выжать максимум полезного действия из насоса на контура теплых полов, то однозначно, нужна последовательная система смесительного узла. И это не обсуждается.
Также при последовательной схеме можно уложить на много больше контуров в одном смесительном узле. Так как расход на полы можно получить на много больше. В то время как на параллельном типе расход насоса делиться с другим кольцом циркуляции.
Чтобы Вы поняли, какие схемы относятся к последовательным, и параллельным типам, рассмотрим схемы.
Параллельные схемы смесительных узлов:
Последовательные схемы смесительных узлов:
Последовательная система лучше тем, что весь расход насоса уходит в контура теплых полов. Этот поток не делится. Тем самым дает возможность сделать в одном смесительном узле большое количество контуров.
Хотите узнать, как сделать теплый пол без смесительного узла?
Такой теплый водяной пол можно сделать, только через , и без насоса! О том, как сделать теплый пол без дополнительного насоса с помощью трехходового клапана, можно узнать здесь: .
Не забывайте! В схеме не обозначены автоматические спускники воздуха. Я надеюсь, что это не составит труда понять куда ставить их. Ставьте на высокую точку подающего и обратного коллектора. Имейте ввиду и подумайте, чтобы ротор насоса не крутился в воздухе.
Мы не рассмотрели вариант, когда имеется один контур для теплого пола. В принципе и такой вполне возможен для одного контура. Только диаметр труб можете уменьшить, да и мощность и расход насоса можно уменьшить в три раза. Подробнее ниже.
О том, какие схемы применить к трехходовым клапанам Вы можете узнать .
Какой насос применить для теплого водяного пола?
На рынке продаются стандартные циркуляционные насосы для с расходом 2,5 м3/час, это около 40 литров/минуту и напором до 6 метров. Чем выше , тем быстрее будет расход в контуре теплого пола. Для теплого пола существует обычный стандарт насоса с параметрами(2,5м3/ч с напором 6м.).
Если на насосе указано, что расход у него 40 литров в минуту, то на деле это не означает, что он будет так качать. Все зависит от пропускной способности самой систему или узла теплого пола. Допустим если у Вас много длинных контуров, то они дают достаточное сопротивление движению, вследствие этого расход насоса уменьшается.
Примерный график всех насосов:
А теперь реальный график такого насоса(2,5м3/ч с напором 6м.):
График 1.
А теперь соображайте, чем лучше пропускаемость, тем меньше напор появляется на контурах. Чем больше веток(контуров) в одном смесительном узле, тем выше расход и само собой разумеется, тем меньше напор на всех контурах. Так что нужно не перегнуть палку! Если для хорошей прокачки контура необходим напор в 3 метра, то необходимо по графику соблюсти расход и не увеличивать количество контуров.
Как узнать весь расход в смесительном узле для параллельной схемы?
1. Посчитать в каждой ветке рекомендуемый расход. Все расходы веток сложить.
2. Посчитать какое количество потерь будут производить все ветки(контура). А на самом деле — количество потерь сможет нам найти постоянный расход приходимого тепла в смесительный узел. Он обычно равен около 40-100% от всех расходов контуров. То есть если вся сумма расхода контуров равна 15 литрам/минуту, то расход приходящего тепла равен примерно 6-15 литрам/минуту. Это зависти от разницы температур от входящего и установленного термоголовкой температуры. Также влияют на расход и теплопотери самого пола. То есть если температура от котла идет 60 градусов, а в смесительном узле установлено 40 градусов, то расход будет примерно 40%. А если температура от котла идет 75 градусов, а в смесительном узле установлено 40 градусов, то расход будет примерно 25%. Также нужно учесть и байпас, если он имеется, то через него тоже идет постоянный расход. Еще прибавьте около 6 литров/минуту на байпас. Если длинные, то соответственно и большие, и соответственно термоголовка начинает пропускать больше тепла, а это значит, что увеличивается расход насоса, и соответственно напор падает.
А если совсем трудно понять, то считайте так:
1. Посчитать в каждой ветке рекомендуемый расход. Все расходы веток сложить.
2. Все расходы веток умножьте на 2. То есть если расход всех контуров равен 15, то общий расход самого насоса должен составить 30 литров/минуту.
Как узнать весь расход в смесительном узле для последовательной схемы?
1. Посчитать в каждой ветке рекомендуемый расход. Все расходы веток сложить. Так как при последовательной системе расход насоса идет полностью на контура теплых полов, то достаточно сложить только расход всех контуров.
Полученный расход сверяйте с графиком и находите выдаваемой графиком потерю напора. На горизонтальной координате имеется шкала расхода, от нужной шкалы поднимаетесь вверх упираетесь на линию и далее горизонтально движетесь влево и получаете шкалу напора. График для других насосов оригинальный. Просто сами вручную можете нарисовать шкалу вашего насоса и нарисовать в нем дугу как показано на графике 1. Так как все насосы работают по стандартной кривой. И в зависимости от напора можно выбрать по таблице 1 необходимую длину трубопровода.
Учтите еще одну особенность! ! Это то, что если насос с напором 6 метров, на деле как обычно выдает меньше напора, например 5 метров. Если расход 40 литров/минуту, то может выдавать 30 литров/минуту. Это происходит в силу разных факторов: Потеря напряжения в сети. Местные сопротивления самих узлов трайников. Кое-какие заужения в трубах, повороты и прочее. И в итоге нужно считать примерно на 15% ниже ресурс насосов. Только тогда Вы сделаете правильно.
Вот такой график практического опыта для насоса с параметрами(2,5м3/ч с напором 6м.):
График 2.
Как узнать какую длину трубы необходимо для теплого пола.
Чтобы это посчитать необходимо знать расход воды в трубе при заданной длине трубопровода на определенную площадь пола. Также на 10м2 должен быть расход не ниже 2 литров/минуту. Зависит от теплопотерь. Ниже будут подробности.
По таблице 1 найти потерю напора. И чтобы напор на входе в контур не был ниже по трубе при определенной скорости течения жидкости.
А напор в одном смесительном узле одинаковый для всех контуров. Насос создает один напор на все контура. Напор вычисляем по графику2.
Не запутайтесь! Это комплексное решение. Ниже прочитайте про шаг укладки и тогда должно быть понятно про длину трубопровода. Главное не сделать слишком длинную трубу.
А если по простому, то на каждые 10 метров 16 трубы необходимо качать минимум 0,4 литра/минуту. То есть на 50 метров трубы необходимо 2 литра/минуту. А на 80 метров 3,2 литра/минуту.
Комплексное решение таково:
Напор насоса(см. гафик2) не должен быть ниже потери напора по длине трубопровода при определенном расходе одного контура. Потерю напора в трубопроводе одного контура находите по таблице1. Напор насоса находится по графику2 при определенном расходе всего смесительного узла.
Таблица 1
Имейте ввиду, что если Вы к себе установите , на без того забитую систему отоплению, то возможно этим смесительным узлом вы отберете у котла некоторый расход, что может повлиять на расход в других ветках отопления. Эта проблема решается добавлением , с дополнительными насосами.
Что касается потерь на загибах трубы, то они очень маленькие, например, чтобы получить сопротивление в 1 метр при скорости 0,44 метров/секунду необходимо 200 поворотов(90градусов). Как правило на одном контуре их может быть максимум 40.
Очень важно знать, что если Вы используете незамерзающую жидкость в системе отопления, то незамерзающая жидкость по вязкости отличается от воды от 30% до 50%. А это означает, что вода по трубам будет бежать еще медленнее. И расчеты нужно вести уже другие. Необходимо добавить запас мощности насоса примерно на 20% или укоротить трубы на 20%. Также имейте ввиду, что теплоемкость незамерзающей жидкости опять меньше примерно на 20%. Это значит эта жидкость будет меньше переносить тепла.
Какое количество контуров теплого пола скомплектовать в одном смесительном узле?
Если опираться на золотой опыт:
По опыту скажу насос с расходом до 40литров/минуту и напором 6 метров для параллельной системы, достаточно до 8 контуров длинной не превышающий 65 метров для 16 трубы.
Для последовательной системы, достаточно до 12 контуров длинной трубы не превышающий 65 метров для 16 .
Если Вы решили сделать трубы длинной 80 метров, то следует сделать 5 контуров для параллельной системы, 8 контуров для последовательной системы, на один такой насос.
Только не вздумайте контур делать длинной 100 метров 16 трубы, очень не экономично! На своем личном опыте проверено!
Да и вообще не рекомендую даже 20 трубу делать 100 метров! Лучше сделайте два контура по 50 метров из 16 .
Рекомендую не превышать длину трубы более 80 метров. Даже для 20 трубы. Трубы используйте только 16. Они гнутся хорошо. И шаг укладки становится доступным для сильного изгиба.
А если Вы решили посчитать более конкретно.
Алгоритм решения данной задачи для параллельной системы.
Допустим, у Вас получилось 6 контуров теплого пола. С длиной, Вы тоже определились и оно около 80 метров. С расходом Вы тоже определились и оно равно 3 литра/минуту на каждую ветку.
А теперь считаем:
Смотрим таблицу 1.
80 метров с расходом 3 литра/минуту дает потерю напора 2,16 метров.
Считаем весь расход: Количество контуров с расходом 3 литра/минуту дают общий расход 18 литров/минуту. Этот расход умножаем на 1.5 раза и получаем 27 литров в минуту. Сверяемся с графиком 2 (см. выше). По графику видно, что напор получается около 1.3 метра. Смотри таблицу 1 и видим, что расход на ветке в 80 метров будет находится в пределах 2 литров/минуту.
Чтобы достичь в каждой ветке расхода в 3 литра/минуту, нужно либо увеличить мощность циркуляционного насоса, что не экономично. Либо разделить 6 веток пополам и на каждые 3 ветки поставить один смесительный узел. Что тоже не экономично. Остается следующий вариант. Укоротить трубы в контурах и увеличить количество веток. Такой вариант более экономичный. С точки зрения затрат на перекачку воды по веткам.
У нас 18 литров/минуту необходимо! Мы можем 18 поделить на 8 веток и получить расход 2.25 литров/минуту на каждую ветку. Длинна ветки уже будет около 65 метров. Но длины каждой ветки могут быть разные. Тогда необходимо высчитать, где какой расход необходим. Но об этом чуть позже. Так как вы еще не знаете, как определить шаг укладки.
Алгоритм решения данной задачи для последовательной системы.
Допустим, у Вас получилось 6 контуров теплого пола. С длиной, Вы тоже определились и оно около 80 метров. С расходом Вы тоже определились и оно равно 3 литра/минуту на каждую ветку.
А теперь считаем:
Смотрим таблицу 1.
80 метров трубы с расходом 3 литра/минуту дает потерю напора 2,16 метров.
Считаем весь расход: Количество контуров с расходом 3 литра/минуту дают общий расход 18 литров/минуту. Сверяемся с графиком 2 (см. выше). По графику видно, что напор получается около 2.5 метра. Смотри таблицу 1 и видим, что расход на ветке в 80 метров будет находится, в пределах 3 литров/минуту. Итог: Подходит!
Как определить шаг укладки теплого пола?
Чтобы определить шаг укладки необходимо знать самой комнаты. И какого качества тепла Вы хотите получить. Но мы не будем вычислять , так как этого можно не делать. Достаточно золотого опыта.
Из золотого опыта, для сурового климата России в пределах -30 градусов для нормально утепленного дома:
Если Вы хотите получать напольное без других источников обогрева, то шаг укладки должен быть не менее 10-12 см. Если в сочетании с батареями(радиаторами), то 15-20см. Делать шаг укладки больше не рекомендую, так как ощущается разница обогрева по площади пола.
Что касается длинны , то это зависит от необходимого расхода воды по трубе и достаточного напора, для ее прокачки.
Что касается расхода:
При шаге укладки в 10-12см на 10м2 необходимо качать 2-3 литров/минуту.
При шаге укладки в 15-20см на 10м2 необходимо качать 1-2 литров/минуту.
А если по точнее, то на каждые 10 метров 16 трубы необходимо качать 0,4 литра/минуту. То есть на 50 метров трубы необходимо 2 литра/минуту. А на 80 метров 3,2 литра/минуту. Чем длиннее труба тем больше теплопотерь в контуре.
То есть чем короче труба, тем меньше можно качать воды по трубам. Пропорционально теплопотерям. Но чем выше расход в трубах, тем кпд пола больше.
Кстати если у Вас в смесительном узле более 3 контуров, то обязательно нужно брать коллектора с расходомерами. Данные коллектора показывают расход в каждом контуре. И если контура по своей длине сильно отличаются и шаг укладки в том числе, то будет возможность отрегулировать каждый контур по количеству расхода. Так как там есть вращающий элемент, который приводит клапан для необходимого пропуска воды.
На рынке продаются зарекомендовавшие себя :
combimix
Скачать программу CombiMix 1.0
dualmix
Видеоурок по расчету смесительного узла
Если Вы любитель конкретно посчитать физику и математику явлений, то будет для Вас интересно познакомится с лично разработанными статьями .
Если, что-то непонятно пишите в комментарии, так как я являюсь и администратором и модератором данного сайта, также я являюсь и автором данной статьи. Мне приходят уведомления о добавленных комментариях, и я их читаю.
Просто щелкайте по тексту «комментарии» Далее по тексту «Добавить комментарий».
Если Вы желаете получать уведомления о новых полезных статьях из раздела: Сантехника, водоснабжение, отопление, то оставте Ваше Имя и Email.
—
Источник: http://infobos.ru/str/598.html
Похожие записи:
kino-brat.ru